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ABSTRACT
This study involved training six neural networks with tailored configurations to automatically 
detect problems in pavements, utilizing the YOLOv3 framework. The acquisition of images 
and videos depicting pavement defects was conducted using smartphones and action 
cameras, leading to the organization of six distinct datasets. Every neural network was 
subjected to training and validation with the goal of attaining optimal accuracy in automated 
object detection. Implementing YOLOv3 facilitated effective defect surveys, enhancing the 
assessment of pavement quality, and offering valuable information for decision-making 
in road transport management. Upon concluding the investigation, it was determined 
that the framing method with the highest efficacy attained a precision rate of 98%. The 
results demonstrate the efficacy of YOLOv3 in accurately detecting defects, underscoring 
the significance of data collecting and framing methods, and adding to the current body of 
knowledge on automated pavement defect detection.
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Este estudo envolveu o treinamento de seis redes neurais com configurações personalizadas 
para detectar automaticamente defeitos nos pavimentos, utilizando o framework YOLOv3. 
A aquisição de imagens e vídeos retratando defeitos do pavimento foi realizada utilizando 
smartphones e câmeras de ação, levando à organização de seis datasets distintos. Cada 
rede neural foi submetida a treinamento e validação com o objetivo de atingir a precisão 
ideal na detecção automatizada de objetos. A aplicação do YOLOv3 possibilitou a realização 
eficiente de levantamentos de defeitos, contribuindo para o diagnóstico da qualidade do 
pavimento e fornecendo subsídios para a tomada de decisão na gestão dos transportes 
rodoviários. Ao final da análise, constatou-se que o método de enquadramento com maior 
eficácia atingiu uma taxa de precisão de 98%. Os resultados demonstram a eficácia do 
YOLOv3 na identificação dos defeitos, ressaltando a importância das técnicas de coleta e 
enquadramento e contribuindo para aumentando do conhecimento existente sobre detecção 
automatizada de defeitos em pavimentos.

Palavras-chave: 
Pavimento. 
Coleta de dados. 
Aprendizado profundo.

1. INTRODUCTION
Ensuring the longevity of road pavements is of utmost importance. Therefore, it is essential to 
actively participate in the practices of preservation and rehabilitation at the most opportune 
moment to uphold their value as significant resources. Precise and reliable data regarding the 
condition of highways is crucial. Postponed maintenance of the road infrastructure can result in 
early aging and potentially trigger an irreversible process of deterioration (Paterson, 1987).

The objective of pavement assessment methods is to restore the comfort and safety of users. 
The Pavement Management System (PMS) has three key stages: data collection, data analysis, and 
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maintenance planning. The initial and important stage is collecting data, which entails assessing 
the present state of the pavement by either manual or automated techniques (Sholevar, Golroo 
and Esfahani, 2022). During the process of manual evaluation, examiners identify problems by 
considering their inherent characteristics, extent, and severity. Automated evaluation entails the 
deployment of cameras or sensors on vehicles to acquire visual data, such as images or films, of 
the state of the pavement. These recordings are subsequently analyzed in the office for assessment 
purposes (Balbo, 2007).

In order to ensure the proper maintenance of road infrastructure, it is crucial to accurately 
identify pavement defects. This study investigates the influence of data collection on the efficacy 
of the YOLOv3 framework in detecting pavement defects, acknowledging the significance of this 
stage in ensuring the reliability of the process. This differs from conventional approaches, which 
primarily focus on optimizing the hyperparameters of the neural network.

The research aims to clarify the impact of variables in data collection approaches, such as the 
diversity of devices employed and strategic positioning, on the accuracy of the system when 
utilizing the YOLOv3 detection framework.

This research not only adds to the current literature on automatic defect detection, but also 
presents a novel viewpoint that emphasizes the importance of the data collecting phase in improving 
the accuracy of identifying defects in YOLOv3 pavement.

2. LITERATURE REVIEW
This discussion will concisely cover Artificial Neural Networks (ANNs), YOLOv3, and studies related 
to the application of computer vision in identifying defects in road pavements.

2.1. Artificial Intelligence (AI)
Artificial Neural Networks (ANNs) are created to interpret information, much like the intricate 
nature of the human brain (Haykin, 1998). In the field of computer vision, artificial neural networks 
are utilized by computers to deduce labels from digital inputs, as elucidated by Khan and Al-Habsi 
(2020) and Prince (2012). These machines draw inspiration from the human ability to recognize 
patterns in images.

Object detection models have the ability to accurately locate an object inside an image and also 
assess its existence and classification. The essential components of these models comprise a feature 
extractor, proposed region, and a classification module. Object detection architectures like YOLO, 
R-CNNs, and SSDs are popular due to their speed, user-friendliness, and ability to locate certain 
objects in images. Object detection models are highly advantageous in scenarios with extensive 
and intricate images as they provide multiple benefits for accurately identifying the position and 
quantity of objects (Sholevar, Golroo and Esfahani, 2022).

YOLO (You Only Look Once) is a Convolutional Neural Network (CNN) that operates in real-time 
and is designed to identify objects within images. The YOLO network may be utilized to effectively 
track, locate, and classify objects (Radovic et al., 2017). The third version of YOLO demonstrates 
impressive real-time processing velocity, achieving a rate of 45 frames per second on a Graphics 
Processing Unit (GPU) by employing the ResNet-50 architecture Convolutional Neural Network 
(CNN). This model employs a single-pass approach to conduct object detection and classification 
in an image, utilizing the object detection method (Redmon et al., 2016). The YOLOv3 detection 
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technique involves resizing the input image, submitting it to the CNN, and finally performing the 
detection.

2.2. YOLOv3 Metrics

YOLOv3 utilizes metrics to evaluate the model’s quality, which are computed using the dataset. 
These metrics include Precision, Recall, F1-score, Intersection over Union (IoU), Average Precision 
(AP per class), and mean Average Precision (mAP). It is important to mention that in order to 
calculate Precision and Recall, one needs to have the values for true positives, false positives, and 
false negatives are required.

Precision is the ability of a model to identify only relevant objects (Padilla, Netto and Silva., 
2020). The formula for calculating Precision is presented in Equation 1.

  
  

True PositivesPrecision
True Positives False Positives

=
+

  (1)

Recall informs the model’s ability to find all relevant cases (Padilla, Netto and Silva, 2020). 
The formula for calculating Recall is presented in Equation 2.
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True Positives False Negatives
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The F1-score is used to determine the ideal confidence that balances the values of Precision 
and Recall for the model (Sasaki, 2007). The formula for calculating the F1-score is presented in 
Equation 3.
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IoU is used to measure how much the detected object’s quadrant overlaps with the object 
demarcated in the labeling phase (Everingham et al., 2010). The formula for calculating IoU is 
presented in Equation 4.

  
  

AreaOverlapIoU
Areaof Union

= (4)

AP (Average Precision) is a popular metric in measuring YOLOv3’s precision, where the average 
precision value is calculated for the Recall value above between 0 and 1 (Everingham et al., 2010). 
The formula for calculating AP is presented in Equation 5.
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mAP (mean Average Precision) compares the objects demarcated in the labeling phase with the 
objects detected by the model and returns a score. The formula for calculating mAP is presented 
in Equation 6.
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2.3 Research related to the use of computer vision in detecting defects in road pavements.
Hoang (2018) proposed an artificial intelligence model that employs image processing methods such 
as gaussian filter, directional filter, and integral projection to extract features of potholes found on 
asphalt pavement. Subsequently, two machine learning algorithms, Least-Squares Support Vector 
Machine (LS-SVM) and Artificial Neural Network (ANN), were applied to assign the “pothole” class.

Maeda et al. (2018) proposed a defect detection method into eight categories and emphasizes 
the availability of a dataset that can be accessed by the public. A total of 9,053 images of pavement 
surfaces were collected using a low-cost smartphone in various towns in Japan. These images 
captured a total of 15,435 documented defects. The authors conducted a performance evaluation 
of the SSD MobileNet and Inception V2 algorithms, focusing on their primary contribution of 
examining and assessing road problems using a mobile application.

Espíndola, Freitas and Nobre Jr. (2021) introduced a method for identifying potholes, patches, 
and cracks in road pavements by utilizing YOLO versions 3 and 4. An action camera was affixed to 
the windshield of a vehicle to capture images of pavement surfaces. This resulted in a collection of 
360 images, with each image comprising 500 defects for each class. The researchers examined the 
impact of image size metrics and the number of iterations on YOLO versions 3 and 4. The primary 
contribution of this work was the identification of imperfections in road pavements using a low-
cost camera positioned on a vehicle.

The selection of the YOLOv3 framework in this investigation is justified by its efficacy and 
speed (Redmon et al., 2016), which are essential for immediate detection of road pavement 
issues. The primary objective is to determine the optimal technique for image framing, utilizing 
the findings to evaluate the precision of YOLOv3 in detecting defects. The objective of focusing on 
YOLOv3 for analysis is to not only improve defect identification but also highlight the importance 
of image collecting and framing tactics in achieving accurate defect detection results.

3. METHOD
The datasets employed in the study consisted of images captured in road segments of the 
BR-020 highway in the state of Ceará, where the presence of potholes and patches was evident.

To acquire images and videos of the highways, a combination of two smartphones (iPhone 12 Pro 
and Samsung Galaxy S20 FE) and two action cameras (GARMIN Virb Ultra 30 and GOPRO Hero 7) 
were used. Subsequent to the installation of these devices in the car, necessary modifications 
were made to accurately detect pavement defects, and the process of collecting data commenced 
at an average velocity of 80 km/h. Additionally, the datasets encompass a diversity of conditions, 
including various lighting conditions and shadows from objects at the roadside. Figure 1 illustrates 
the positioning of the equipment used in the data collection process of this investigation. .

3.1. Data acquisition using smartphones
Two smartphones were affixed to the inside windshield of a car to record panoramic images of 
the road. Smartphone Type 1, an iPhone 12 Pro (Figure 1a), and Smartphone Type 2, a Samsung 
Galaxy S20 FE (Figure 1b), were used for this purpose.

Using Smartphone Type 1 and Smartphone Type 2, four datasets were created by recording videos at 
30 frames per second with 2x zoom through the devices’ native camera applications. Both smartphones 
recorded videos in two distinct resolutions: FullHD (1920 x 1080 pixels) and 4K (3840 x 2160 pixels).
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The datasets were designated as SmartPhone 1 – FHD, SmartPhone 1 – 4K, SmartPhone 2 – FHD, 
and SmartPhone 2 – 4K. The author traveled the same road section, totaling 200 km, to obtain 
these four sets of images. Recordings were made during the day and under favorable weather 
conditions.

Figure 1. Image Acquisition by Equipment (a) Smartphone Type 1, (b) Smartphone Type 2, (c) Action Camera Type 1, and 
(d) Action Camera Type 2.

Upon completion of the survey, files were transferred from the smartphones to the computer, 
and frames from the videos were extracted to generate JPEG format images. Subsequently, after 
extraction and selection of valid images, i.e., those showing potholes and patches, 291 images 
were obtained for SmartPhone 1 - FHD, 519 for SmartPhone 1 - 4K, 330 for SmartPhone 2 - FHD, 
and 406 for SmartPhone 2 - 4K.

3.2. Data acquisition using Action Camera Type 1

Action Camera Type 1, a GARMIN Virb Ultra 30 (Figure 1c), was installed on the external windshield 
of a passenger vehicle, configured to capture panoramic images of the road.

The dataset generated by Company A, using action camera type 1, was obtained through the 
evaluation of approximately 800 km, collecting data in the form of JPEG images. Photo capture 
occurred every 20 meters using the “Interval between photos” option (Travelapse), with GPS 
enabled. All images were recorded during the day and under favorable weather conditions. It is 
important to note that the images were framed to provide a panoramic view of the road, resulting 
in limited visual information about the pavement but with extensive contextualization of the 
surrounding landscape. This framing choice was deliberate, aiming to analyze the CNN’s accuracy 
in panoramic image scenarios. However, the images in this dataset exhibited excessive brightness 
and limited sharpness, impairing the visibility of defects.
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Approximately 50 images per kilometer were generated, totaling 40,000 images, stored in 4K 
resolution (3840 x 2160 pixels) on the camera’s memory card. After extraction and selection of 
images, 10,000 images remained showing potholes and patches.

3.3. Data Acquisition Using Action Camera Type 2
Action Camera Type 2, a GoPro Hero 7 (Figure 1d), was mounted on the hood of a passenger 
vehicle (external part) at an average speed of 80 km/h and configured to focus on the pavement.

This dataset, developed by the author, covered a total distance of 200 km. Data collection 
occurred in the form of JPEG images, using the “Time Lapse Photo” option, programmed to capture 
an image every 0.5 seconds in 12-megapixel resolution, in linear mode, and with GPS enabled for 
location registration. The linear mode was chosen to avoid distortions in the images. All images 
were captured during the day and under favorable weather conditions. The framing of the images 
was specifically directed to the pavement, ensuring sharpness that allowed easy identification of 
defects with the naked eye.

At the end of the survey, approximately 14,000 images were recorded, stored in 4K resolution 
(3840 x 2160 pixels) on the camera’s memory card. After extraction and selection, 1,389 images 
showing potholes and patches were obtained.

3.4. Structuring of Datasets
It is relevant to highlight those various sections of the road displayed pavement in satisfactory 
conservation conditions. In this context, it was imperative to perform a selection of the collected 
images, dividing them into two distinct categories: one exhibiting potholes and patches, and the 
other consisting of images that were defect free or had different defects. . Images classified as 
“defective” encompassed those containing potholes and/or patches, being directed to the labeling 
process. Conversely, images classified as “non-defective” were those that did not show any potholes 
or patches and were therefore not included in the labelling process.

The labeling procedure consisted of manual identification and location of defects present in 
the images. Once this step was completed, the resulting .txt label files were utilized for training 
and validating the CNN.. These collected data were integrated into a model designed specifically 
to determine the type of defect, classifying them as potholes or patches, and identifying the 
corresponding position in the visual field of the image where the defect manifests.

Table 1 provides the quantitative values of potholes and patches labeled per dataset at the end 
of the labeling phase.

Tabela 1: Quantitative of Images, Potholes, and Patches per Dataset.

Dataset Image Files Labeled Potholes Labeled Patches

1 – SmartPhone 1 - FHD 291 157 613

2 - SmartPhone 1 - 4K 519 726 743

3 - SmartPhone 2 - FHD 330 349 320

4 - SmartPhone 2 - 4K 406 364 741

5 - Action Camera Type 1 - 4K 10,000 6,001 17,090

6 - Action Camera Type 2 - 4K 1,389 1,505 1,192

After creating the labels, the training phase of the model using YOLOv3 was initiated.
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3.5. Computational infrastructure
The YOLOv3 framework was utilized for the training process, operating on the Linux Operating 
System (Distribution: Ubuntu 20.04 LTS). The studies were performed using a laptop that had 
an Intel Core i5 processor, 32GB of RAM, a 1TB NVMe M.2 SSD, and a graphics card with 4GB of 
dedicated memory. The training process for each neural network required around 24 hours. Both 
the detection and training operations were performed using the GPU, taking advantage of the 
computational power of the graphics card in the equipment.

3.6. YOLOv3 parameters
The batch size was configured to 64, and the subdivisions were set to 16, based on the system’s 
graphical capabilities. The filter parameter was set to 21, max_batches to 4000, and steps to 
3200 and 3600. The author of the YOLOv3 framework provided guidelines for defining these 
settings (Redmon et al., 2016).

It is relevant tomention that YOLOv3 resizes the images using the width and height parameters 
in the settings. It is important to highlight that any modification in resizing will affect the precision 
of the final result.. However, it is important to consider that the larger the size of the image sent to 
the model, the more memory and processing resources will be demanded. For this investigation, 
the dimensions of 512 were used for both the width and height.

3.7. YOLOv3 training
Once the model parameters are defined, training begins, generating a weight file every 1000 iterations. 
It is important to highlight that the training set corresponds to 90% of the dataset, while the remaining 
10% constitute the validation set. The training and validation images were carefully selected to 
ensure distinctiveness and were chosen randomly to evaluate the effectiveness of the detections.

During training, the model receives as input the defined parameters and the images with their 
corresponding labels. As output, metrics and a weight file representing the network’s learning 
are generated.

Following the conclusion of each training, the process of defect detection is performed for each 
of the datasets. A Python code was developed to read all images from the dataset directories in 
the file system, identifying potholes and patches. During the execution of the detections, new JPEG 
format image files are generated, representing the output of each model.

4. ANALYSIS AND DISCUSSION OF RESULTS
The analysis of the results obtained in the research considered the datasets structured in the 
context of this study. A comparison of the results achieved for each dataset that was subjected to 
training was performed.

4.1. Training analysis
Table 2 displays the results of the model training conducted in this study. By observing the evaluation 
metrics and considering the specific characteristics of each trained image set, it is possible to 
infer the most effective camera positioning for the automatic detection of the investigated defects.
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Table 2: Results of the metrics from the six trainings conducted.

Dataset
AP (%) Precision  

(%)
Recall  
(%)

F1-Score 
 (%)

IoU 
 (%)

mAP 
(%)Pothole Patch

1 – SmartPhone 1 - FHD 71.86 83.86 86 77 81 65.49 78.86

2 - SmartPhone 1 - 4K 63.31 76.38 77 65 71 55.54 69.84

3 - SmartPhone 2 - FHD 77.08 65.28 81 69 75 59.97 79.18

4 - SmartPhone 2 - 4K 66.8 73.3 81 71 76 61.86 78.05

5 - Action Camera Type 1 - 4K 57.82 76.42 73 68 70 53.41 57.12

6 - Action Camera Type 2 - 4K 99.89 95.91 98 97 98 80.14 84.90

In the first two trainings, it’s possible to conclude that dataset 1 (SmartPhone 1 - FHD) exhibited 
superior combined metrics compared to dataset 2 (SmartPhone 1 - 4K). There was an increase 
in all metrics except for true positives (TP) – an input metric in Precision and Recall. Despite the 
camera framing being identical for both datasets, the 4K images yielded significantly inferior 
results compared to the FullHD images from Smartphone 1.

In comparing datasets 3 (SmartPhone 2 - FHD) and 4 (SmartPhone 2 - 4K), it’s observed that 
the learning from the 4K dataset showed equal or superior results in Precision, Recall, F1-score, 
and true positives (TP) compared to the FullHD dataset. However, there was a significant increase 
in the number of false positives (FP) and false negatives (FN) in dataset 4, compromising the 
overall result. The limitation in the quantity of images may have induced a greater variation in 
the percentage of metrics, given the fluctuations in FP and FN numbers. This directly influenced 
Precision and Recall and consequently affected the F1-Score, AP, and mAP. Including more images 
in the training process would likely generate more consistent results.

The trainings conducted on smartphones had exactly the same camera framing. However, 
datasets 2 and 4 exhibited more FP than their respective FullHD counterparts (datasets 1 and 3). 
Despite this occurrence, it is observed that the smartphone datasets maintain an overall average 
(mAP) between 70% and 80% and a precision between 81% and 86%.

On the other hand, dataset 5 revealed the worst performance among the trainings. Despite having 
the largest number of labeled images compared to the others, superior results were expected 
given the volume of data for learning. However, the data collection phase was conducted outside a 
standard, resulting in images with little visual information of the highway and inadequate visibility 
of defects in the pavement.

Dataset 6 presented the best results in all metrics. In this set, the camera framing was fully 
focused and zoomed in on the pavement, unlike the other datasets, which provided a panoramic 
view of the road. Additionally, the images were quite clear, and the pavement defects could be 
visualized excellently.

4.2. Discussions
A subjective analysis highlights the main recurring scenarios during validation.

Figure 2 illustrates three scenarios from the dataset captured by SmartPhone Type 1 - FHD. 
The scenario in Figure 2a represents a successful case where both labeled patches were detected by 
the model. In the scenario of Figure 2b, a pothole was not labeled, but the model was able to detect 
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the defect, making it a favorable case, although it is considered a false negative in YOLOv3 metrics. 
In the third scenario (Figure 2c), a situation is observed where the furthest pothole was not 
detected due to its size relative to the image. However, due to the frequency of the images, more 
distant defects will be identified in subsequent records.

Figure 2. Validation images from the dataset of Smartphone Type 1 - FHD.

Figure 3 displays three scenarios from the dataset captured by Smartphone Type 1 - 4K. 
The scenario depicted in Figure 3a illustrates a successful case, where both labeled potholes were 
correctly identified during detection. In the scenario of Figure 3b, there is a situation where two 
labeled defects were not found, while one unlabeled defect was detected. Here, there are two false 
negatives, similar to the previous scenario (Figure 2b), but with the addition of two unidentified 
defects, indicating the need for a more robust training. The third scenario (Figure 3c) presents 
another case of false negative, with three defects not detected. This third case resembles the 
second, suggesting the need for new training with the inclusion of more images with different 
arrangements of defects and a review of the labels in this dataset.

Figure 4 also displays three scenarios from the dataset captured by Smartphone Type 2 - FHD. 
In the first case (Figure 4a), we have a successful situation where both defects were correctly 
identified. In the second scenario (Figure 4b), there are two false negatives, indicating an issue in 
metric generation, but also highlighting that the model recognized situations where labeling was 
not performed. In Figure 4c, we observe a problem of not identifying a pothole. This third scenario 
may result from the limited quantity of images in the dataset and could likely be addressed by 
including more defects and conducting a new training session.
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Figure 3. Validation images from the dataset of Smartphone Type 1 - 4K.

Figure 4. Validation images from the dataset captured by Smartphone Type 2 - FHD.
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Figure 5 illustrates three scenarios from the dataset captured by Smartphone Type 2 - 4K. In the 
first scenario (Figure 5a), we observe a successful outcome where the defects were correctly 
identified according to the labels. In the second scenario (Figure 5b), an interesting observation 
arises: despite labeling two patches, the model detected them as a single defect. This suggests that 
the model learned to identify patches accurately, either as separate entities or as a combined defect. 
In Figure 5c, the model identified two potholes while failing to detect another two. Improvements in 
the second and third scenarios depicted in Figure 5 are anticipated with the addition of more images 
to the dataset, along with a thorough review and adjustment of incomplete or incorrect labeling.

The results from the dataset captured by Action Camera Type 1 are presented in Figure 6. 
In the first and second scenarios (Figure 6a and Figure 6b), the model successfully identified the 
defects. Due to the wide panoramic view of the images, the more distant defects appeared with 
small dimensions and low sharpness, making detection challenging. It is important to note that 
such cases are common in this dataset. In the third scenario (Figure 6c), the object in the scene 
is clearer and closer to the camera, enabling detection. The main challenge of this dataset is the 
camera’s wide field of view, resulting in a cluttered scene, as only defects on the pavement are 
relevant. Even with a lower degree of accuracy, detection is still possible. To improve accuracy, the 
frequency of image capture in the field can be increased, taking a photo every 5 meters, ensuring 
that more distant defects are identified in subsequent images.

In the dataset from Action Camera Type 1, a predominance of sky and parts of the vehicle can 
be observed, accounting for approximately 70% of the image. Although the images were recorded 
in 4K resolution, during training, they were resized to 512 pixels in width, resulting in a reduction 
of about eight times. This resizing means that defects became extremely small, posing a greater 
challenge for the model in detecting these objects.

Figure 5. Validation images from the dataset captured by Smartphone Type 2 - 4K.
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The results of the dataset from Action Camera Type 2 are presented in Figure 7. In the 
scenario of Figure 7a, a successful case is observed, where the model identified all defects. 
In the second case (Figure 7b), there were false negatives. In the third (Figure 7c), the model 
did not identify the water-covered pothole at the end of the image. In this last case, few labels 
similar to this were provided to the model, suggesting the inclusion of more situations of this 
nature to improve its accuracy. It is noteworthy that this dataset yielded the best results in 
terms of metrics, and a detailed analysis of each case individually can further contribute to 
the model’s improvement, mainly through increasing the number of images. It is important 
to highlight that this dataset provided an enlarged view of the objects in the scene, allowing 
the defects to remain clearly visible, sharp, and with an appropriate size for identification by 
the YOLOv3 network.

Figure 6. Validation images from the dataset of Action Camera Type 1.

Looking at the results in Table 2, it becomes evident that dataset 6 exhibits higher Average 
Precision (AP) values compared to the other datasets generated by smartphones (datasets 1, 2, 
3, and 4) and Action Camera Type 1 (dataset 5). One possible explanation for this discrepancy 
is that the defects recorded in the images of dataset 5 occupy a very small space in the image, as 
the roadway represents only about 30% to 40% of the image, making them difficult to visualize. 
On the other hand, the defects recorded in dataset 6 occupy a considerable space in most cases, 
making them easier to detect and, consequently, contributing to a higher average precision.

It is worth noting that the classes in the datasets had imbalanced data, as the interest in this 
research was to evaluate whether even with lower quality data, the model would show better 
precision due to the quantity.



TRANSPORTES | ISSN: 2237-13461 13

Freitas, Nobre Júnior and Espindola Volume 32 | Número 2 | e2796 | 2024

According to the literature, YOLOv3 presents challenges in detecting small objects, which may explain 
the results obtained with dataset 5. However, it is noteworthy that the value of average precision 
(AP) in the training of dataset 6 reached 98% precision. This demonstrates that the approach of 
using images with the camera directed at the pavement had a positive impact on the results.

Figure 7. Validation images from the dataset of Action Camera Type 2.

5. CONCLUSIONS

In conclusion, the results of this research indicate that the choice of YOLOv3 for automated 
detection of road pavement defects was effective, demonstrating good accuracy, especially when 
the camera is directly focused on the pavement. Training and evaluation were conducted on six 
different datasets. The selection of data collection methods using smartphones and action cameras 
showed a significant impact on the results obtained. It was observed that the most effective framing, 
specifically focused on the pavement, achieved a remarkable accuracy of 98%, highlighting the 
critical importance of data collection and framing techniques in the model’s efficiency.

Furthermore, the use of YOLOv3 proved to be an efficient tool for defect detection, showcasing 
its ability to accurately identify pavement defects even in challenging contexts. The comparative 
analysis among the datasets revealed important nuances, emphasizing that image quality, capture 
frequency, and camera focus played significant roles in the results. Datasets that provided a clearer 
and more detailed view of the defects achieved superior metrics, while those with limitations, 
such as objects occupying a large part of the scene, exhibited lower precision. Considering these 
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factors is crucial for the model’s performance, indicating the need for careful planning in data 
collection and labeling to train more robust models.

Finally, the results of this study not only strengthen the existing literature on automated detection 
of pavement defects but also provide a solid foundation for future research and practical applications. 
The efficiency of YOLOv3, combined with careful consideration of data collection techniques, stands 
out as a crucial advancement in the field, offering contributions to effective management of road 
infrastructures and enhancing decision-making in the realm of road transportation.

As future suggestions, it is proposed to expand the quantity of images and labels related to 
potholes and patches in datasets 1, 2, 3, 4, and 6. This expansion aims to evaluate the performance 
and accuracy of the model in more comprehensive situations, enabling a more robust and 
comprehensive analysis of the results obtained.
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