Compreensão da formação de NO2 proveniente das operações de transporte urbano e suas relações com agentes causais

Autores

  • Jefferson Pereira Ribeiro Universidade Federal do Ceará - Programa de Pós-Graduação em Engenharia de Transportes
  • Demostenis Ramos Cassiano Universidade Federal do Ceará - Programa de Pós-Graduação em Engenharia de Transportes
  • Bruno Vieira Bertoncini Universidade Federal do Ceará - Programa de Pós-Graduação em Engenharia de Transportes
  • Verônica Teixeira Franco Castelo Branco Universidade Federal do Ceará - Programa de Pós-Graduação em Engenharia de Transportes
  • Francelino Franco Leite de Matos Sousa Universidade Federal do Ceará - Programa de Pós-Graduação em Engenharia de Transportes
  • Wendy Fernandes Lavigne Quintanilha Universidade Federal do Ceará - Programa de Pós-Graduação em Engenharia de Transportes
  • Rivelino Martins Cavalcante Laboratório de avaliação de contaminantes orgânicos (LACOr) - Instituto de ciências do mar
  • Ithala Saldanha de Santiago Laboratório de avaliação de contaminantes orgânicos (LACOr) - Instituto de ciências do mar
  • Gabrielle Melo Fernandes Laboratório de avaliação de contaminantes orgânicos (LACOr) - Instituto de ciências do mar

DOI:

https://doi.org/10.14295/transportes.v27i2.1728

Palavras-chave:

Mobilidade urbana, Concentração de NO2, Uso do solo, Gabarito das edificações, Volume de tráfego.

Resumo

Os problemas oriundos da mobilidade urbana estão relacionados ao crescimento acelerado e não planejado das cidades, à distribuição espacial das atividades, ao crescimento expressivo do uso do automóvel, as deficiências do transporte público e a ocorrência de impactos negativos nos âmbitos sociais e ambientais, tendo como um dos principais impactos a concentração de NO2. Dessa forma, o presente trabalho tem por objetivo avaliar a influência dos fatores (gabarito das edificações, uso do solo e volume de tráfego) nas concentrações de NO2. Para tal, a complexidade do uso do solo urbano foi traduzida por meio do indicador que mede a diversidade do uso do solo urbano, entropia. As concentrações de NO2 foram medidas através de um método de amostragem passiva. Como principais resultados verificou-se que o volume de tráfego veicular aliado a elevada entropia se relacionam diretamente com as concentrações de NO2. O gabarito das edificações se relaciona com estas concentrações mas não de forma tão direta, pois tal fator pode ser suprimido pelo tráfego veicular ou influenciado por fenômenos naturais que facilitam ou não a dispersão de NO2.

Downloads

Não há dados estatísticos.

Referências

Aguiar, L. F. M. C.; M. V. C. Silva; A. W. Gandu, C. A. Rocha e R. M. Cavalcante (2017) Caracterização de Cânions urbanos e seus efeitos climáticos em área com intenso processo de verticalização na cidade de Fortaleza, Ceará. Revista Brasileira de Geo-grafia Física, v. 10, n. 4, p. 1046–1058. DOI: 10.26848/rbgf.v10.4.p1046-1058.

Alnawaiseh, N. A.; J. H. Hashim e Z. M. Isa (2015) Relationship between vehicle count and particulate air pollution in Amman, Jordan. Asia-Pacific Journal of Public Health, v. 27, n.2, p.1742–1751. DOI: 10.1177/1010539512455046.

Ariotti, P. (2010) Método para aprimorar a estimativa de emissões veiculares em áreas urbanas através de modelagem híbrida em redes. Tese (doutorado). Programa de Pós-graduação em Engenharia de Produção. Universidade Federal do Rio Grande do Sul, Porto Alegre.

Beelen, R.; M. Voogt; J. Duyzer; P. Zandveld e G. Hoek (2010) Comparison of the performances of land use regression model-ling and dispersion modelling in estimating small-scale variations in long-term air pollution concentrations in a Dutch urban area. Atmospheric Environment, v. 44, p. 4614-4621. DOI:10.1016/j.atmosenv.2010.08.005.

Beevers, S. D. e D. C. Carslaw (2005) The impact of congestion charging on vehicle emissions in London. Atmospheric Envi-ronment, v.39, p.1–5. DOI:10.1016/j.atmosenv.2004.10.001.

Bender, A. P. e M. Dziedzic (2014) Dispersão de poluentes nos eixos estruturais em Curitiba (PR), Brasil. Revista de Engenha-ria Sanitária e Ambiental, v. 19, p. 31–42. DOI:10.1590/S1413-41522014019010000364.

Bordoloi, R.; A. Mote; P. Pratim e C. Mallikarjuna (2013) Quantification of Land Use diversity in the context of mixed land use. Procedia - Social and Behavioral Sciences, Elsevier B.V., 104, 563–572. DOI: 10.1016/j.sbspro.2013.11.150.

Campos, V.P.; L.P.S. Cruz; R.H.M. Godoi; A.F.L. Godoi e T.M. Tavares (2010) Development and validation of passive samplers for atmospheric monitoring of SO2, NO2, O3 and H2S in tropical areas. Microchemical Journal, v. 96, p.132-138. DOI:10.1016/j.microc.2010.02.015.

Carslaw, D. C. (2005) Evidence of an increasing NO2/NOX emissions ratio from road traffic emissions. Atmospheric Environ-ment, v. 39, n. 26, p. 4793–4802. DOI:10.1016/j.atmosenv.2005.06.023.

Cascetta, E. Transportation Systems Analysis. 2nd ed. New York: Springer, 2009.

Colvile, R.N.; E. J. Hutchinson; J. S. Mindell e R.F. Warren (2001) The transport sector as a source of air Pollution. Atmospheric Environment, v. 35, p. 1537-1565. DOI:10.1016/S1352-2310(00)00551-3.

Cónsul, J. M. D.; D. Thiele; R. C. Veses e I. M. Baibich (2004) Decomposição catalítica de óxidos de nitrogênio. Química Nova, v. 27, n. 3, 432-440, 2004. DOI: 10.1590/S0100-40422004000300013.

Cruz, L. P. S. e V. P. Campos (2002) Amostragem passiva de poluentes atmosféricos. Aplicação ao SO2, Química Nova, v. 25, n.3, p. 406-411. DOI: 10.1590/S0100-40422002000300013.

D´Agosto, M. A. (2015) Transporte, uso de energia e impactos ambientais: uma abordagem introdutória. Elsevier, Rio de Janeiro, Brasil.

Eeftens M.; J. Beekhuizen; R. Beelen; M. Wang; R. Vermeulen; B. Brunekreef; A. Huss e G. Hoek (2013) Quantifying urban street configuration for improvements in air pollution models. Atmospheric Environment, v. 72, p.1-9. DOI:10.1016/j.atmosenv.2013.02.007.

Fotheringham, A. S.; C. Brunsdon e M. Charlton (2002) Geographically Weighted Regression: the analysis of spatially varying relationships. London: John Wiley & Sons Ltd. ISBN: 978-0-471-49616-8.

Guttikunda, S. K.; G. R.Carmichael; G. Calori; C. Eck e J-H Woo (2003) The contribution of megacities to regional sulfur pollu-tion in Asia. Atmospheric Environment, v.37, p.11–22. DOI:10.1016/S1352-2310(02)00821-X.

Hagenbjörk, A.; E. Malmqvist; K. Mattisson; N. J. Sommar e L. Modig (2017) The spatial variation of O3, NO, NO2 and NOx and the relation between them in two Swedish cities. Environmental Monitoring and Assessment, v. 161, p. 1-12. DOI:10.1007/s10661-017-5872-z.

Hong, J. e A. Goodchild (2014) Land use policies and transport emissions: Modeling the impact of trip speed, vehicle charac-teristics and residential location. Transportation Research Part D: Transport and Environment, v. 26, p. 47–51. DOI:10.1016/j.trd.2013.10.011.

Karra, S.; L. M. Epshtein e M. K. A. Neophytou (2017) Air flow and pollution in a real, heterogeneous urban street canyon: A field and laboratory study. Atmospheric Environment, v. 165, p. 370-384. DOI: 10.1016/j.atmosenv.2017.06.035.

Khisty, C. J. e B. K. Lall (2002) Transportation Engineering: An Introdution. Prentice Hall, Inc, New Jersey. ISBN 13: 9780130335609.

Kockelman, K. M (1997) Travel Behavior as Function of Accessibility, Land Use Mixing, and Land Use Balance Evidence from San Francisco Bay Area. Transportation Research Record 1607, p. 116-125. DOI: 10.3141/1607-16.

Liu, S. V.; F-L. Chen e J. Xue (2017) Evaluation of Traffic Density Parameters as an Indicator of Vehicle Emission-Related Near-Road Air Pollution: A Case Study with NEXUS Measurement Data on Black Carbon. International Journal of Environ-mental Research and Public Health, v.14, p.1581. DOI: 10.3390/ijerph14121581.

Mayer, H. (1999) Air pollution in cities. Atmospheric Environment, v. 33, p. 4029-4037. DOI:10.1016/S1352-2310(99)00144-2.

O’Sullivan, D. e D. J. Unwin (2010) Geographic information analysis. 2 ed. London: John Wiley & Sons Ltd, 2010. ISBN: 978-0-470-28857-3.

Oke, T. R. (1998) Street design and urban canopy layer climate, Energy and Buildings, v. 11, p. 103–113. DOI:10.1177/030913338801200401.

Rakowska, A.; K. C. Wong; T. Townsend; K. L. Chan; D. Westerdahl; S. Ng; G. Močnik; L. Drinovec e Zhi Ning (2014) Impact of traf fi c volume and composition on the air quality and pedestrian exposure in urban street canyon. Atmospheric Envi-ronment, v.98, p. 260–270. DOI: 10.1016/j.atmosenv.2014.08.073.

Requia, W. J.; P. Koutrakis; H. L. Roig; M. D. Adams e C. M. Santos (2016) Association between vehicular emissions and cardi-orespiratory disease risk in Brazil and its variation by spatial clustering of socio-economic factors. Environmental Research, 150, 452–460. DOI: 10.1016/j.envres.2016.06.027.

Richmond-Bryant, J. e A. Reff (2012) Air pollution retention within a complex of urban street canyons: A two-city Compari-son. Atmospheric Environment, v.49, p. 24-32. DOI:10.1016/j.atmosenv.2011.12.036.

Richmond-Bryant, J.; S. S. Isukapalli e D. A. Vallero (2011) Air pollutant retention within a complex of urban street canyons. Atmospheric Environment, v.45, p. 7612-7618. DOI:10.1016/j.atmosenv.2010.11.003.

Rodríguez, M. C.; L Dupont-Courtade e W. Oueslati (2016) Air pollution and urban structure linkages: Evidence from Euro-pean cities. Renewable and Sustainable Energy Reviews, v. 53, p.1–9. DOI: 10.1016/j.rser.2015.07.190.

Saltzman, B. E. (1954) Colorimetric microdetermination of nitrogen dioxide in the atmosphere. Analytical Chemistry, v. 26, n. 12, p. 1949–1955. DOI: 10.1021/ac60096a025.

Sider, T.; A. Alam; M. Zukari; H. Dugum; N. Goldstein; N. Eluru e M. Hatzopoulou (2013) Land-use and socio-economics as determinants of traffic emissions and individual exposure to air pollution. Journal of Transport Geography, v. 33, p. 230–239. DOI: 10.1016/j.jtrangeo.2013.08.006.

Sousa, F. W.; R. M. Cavalcante; C. A. Rocha, R. F. Nascimento e A. G. Ferreira (2015) Carbonyl compounds from urban activities and their associated cancer risks: The influence of seasonality on air quality (Fortaleza-CE, Brazil). Urban Climate, v. 13, p. 110–121. DOI: 10.1016/j.uclim.2015.03.004.

Sun, X.; C. G. Wilmot e T. Kasturi (1998) Household Travel, Household Characteristics, and Land Use An Empirical Study from the 1994 Portland Activity-Based Travel Survey. Transportation Research Record 1607, p-10-17. DOI:10.3141/1617-02.

Taniguchi, E., Thompson, R. G. e Yamada, T. (2012) Emerging techniques for enhancing the practical application of city logis-tics models. Procedia – Social and Behavioral Sciences, Vol 39, 3–18. DOI: 10.1016/j.sbspro.2012.03.087.

Taseiko, O. V.; S. V. Mikhailuta; A. Pitt; A. A. Lezhenin e Y. V. Zakharov (2009) Air pollution dispersion within urban street can-yons. Atmospheric Environment, v. 43, p. 245–252. DOI:10.1016/j.atmosenv.2008.09.076.

Teixeira, E. C.; S. Feltes; E. R. R. Santana (2008) Estudo das emissões de fontes móveis na região metropolitana de Porto Ale-gre, Rio Grande do Sul. Química Nova, Porto Alegre, v. 31, n. 2, p.244-248. DOI: 10.1590/S0100-40422008000200010.

Vesilind, P. A. e S. M. Morgan (2011) Introdução à Engenharia Ambiental. São Paulo. Cengage Learning, 2°ed. ISBN-13: 9788522107186.

Weber, N.; D. Haase e U. Franck (2014) Assessing modelled outdoor traffic-induced noise and air pollution around urban structures using the concept of landscape metrics. Landscape and Urban Planning, v. 125, p.105–116. DOI:10.1016/j.landurbplan.2014.02.018.

Wee, B. Van e D. Banister (2016) How to Write a Literature Review Paper? Transport Reviews, 36(2), 278–288. DO: 10.1080/01441647.2015.1065456.

WHO Regional Office for Europe OECD (2015) “Economic cost of the health impact of air pollution in Europe: Clean air, health and wealth.” European Environment and Health Processes, 1–54.

Yuval; B. Flicstein e D. M. Broday (2008) The impact of a forced reduction in traffic volumes on urban air pollution. Atmos-pheric Environment, v.42, p.428–440. DOI:10.1016/j.atmosenv.2007.09.066.

Zhang, K. e S. Batterman (2013) Air pollution and health risks due to vehicle traffic. Science of the Total Environment, v. 450–451, p. 307–316. 451, 307–316. DOI:10.1016/j.scitotenv.2013.01.074.

Zhang, R.; K. Matsushima e K. Kobayashi (2018) Can land use planning help mitigate transport-related carbon emissions? A case of Changzhou. Land Use Policy, v. 74, p.32–40. DOI:10.1016/j.landusepol.2017.04.025.

Zhou, Y.; Y. Wu; S. Zhang; L. Fu e J. Hao (2014) Evaluating the emission status of light-duty gasoline vehicles and motorcycles in Macao with real-world remote sensing measurement. Journal of Environmental Sciences-China, v. 26, n. 11, p. 2240–2248. DOI:10.1371/journal.pone.0112195.

Downloads

Publicado

31-08-2019

Como Citar

Ribeiro, J. P., Cassiano, D. R., Bertoncini, B. V., Castelo Branco, V. T. F., Sousa, F. F. L. de M., Quintanilha, W. F. L., Cavalcante, R. M., Santiago, I. S. de, & Fernandes, G. M. (2019). Compreensão da formação de NO2 proveniente das operações de transporte urbano e suas relações com agentes causais. TRANSPORTES, 27(2), 209–223. https://doi.org/10.14295/transportes.v27i2.1728

Edição

Seção

Artigos