Avaliação do desempenho de redes neurais convolucionais para detecção automática de trincas em pavimentos
DOI:
https://doi.org/10.14295/transportes.v28i5.2283Palavras-chave:
Redes Neurais Convolucionais. Gerência de Pavimentos. Detecção automatizada de trincas em pavimentos. Visão computacional.Resumo
Neste artigo é avaliado o potencial de Redes Neurais Convolucionais (RNC) como ferramenta automatizada para detecção de trincas em superfícies de pavimentos. Foram utilizadas fotografias da superfície de diferentes segmentos de um pavimento do tipo Cheapseal, obtidas a partir de câmeras fotográficas montadas em veículos. As imagens foram avaliadas a partir da proposta do uso de duas arquiteturas de redes neurais convolutionais e implementadas com o auxílio da biblioteca de aprendizado de máquina PyTorch, o qual possui código aberto e disponível na forma de script em linguagem Python. As imagens foram processadas com o uso de três técnicas diferentes, com o intuito de avaliar a influência da complexidade dos algoritmos propostos. Para análise da performance da rede neural, foram utilizadas como métricas de avaliação a acurácia, a precisão, o recall e o F1 score. Os resultados apontaram que a arquitetura da rede neural escolhida apresentou desempenho satisfatório na detecção de trincas, bem como indicam que a complexidade da rede é um dos fatores a ser considerado durante o processo de classificação das imagens.
Downloads
Referências
Arpit, D.; S. Jastrzębski; N. Ballas; D. Krueger; E. Bengio; M. S. Kanwal; T. Maharaj; A. Fischer; A. Courville; Y. Bengio and S. Lacoste-Julien (2017). A Closer Look at Memorization in Deep Networks. Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR 70, 2017. ArXiv - a repository of electronic preprints, 1–10. arXiv:1706.05394
Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools. Available at: http://drdobbs.com/opensource/184404319
Dalla Rosa, F.; N. G. Gharaibeh; E. G. Fernando and A. Wimsatt (2016). Quality Assurance for Automated and Semi-Automated Pavement Condition Surveys. International Conference on Transportation and Development 2016. p. 192–201. doi:10.1061/9780784479926.018
Dung, C. V. and L. D. Anh (2019). Autonomous concrete crack detection using deep fully convolutional neural network. Automation in Construction, v.99, p. 52–58. doi:10.1016/j.autcon.2018.11.028
Fan, Z.; S. Member; Y. Wu; J. Lu and W. Li (2018). Automatic Pavement Crack Detection Based on Structured Prediction with the Convolutional Neural Network. ArXiv - a repository of electronic preprints, p. 1–9. arXiv:1802.02208
Haykin, S. (2009). Neural networks and learning machines. (3rd ed). Pearson, Ontario.
Khan, S.; H. Rahmani; S. A. A. Shah and M. Bennamoun (2018). A Guide to Convolutional Neural Networks for Computer Vision. Synthesis Lectures on Computer Vision, v.8 n.1, p. 1–207.DOI: 10.2200/s00822ed1v01y201712cov015
Koch, C.; K. Georgieva; V. Kasireddy; B. Akinci and P. Fieguth (2015). A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure. Advanced Engineering Informatics, v.29, n.2, p. 196–210. DOI: 10.1016/j.aei.2015.01.008
Li, S.; Y. Cao and H. Cai. (2017). Automatic Pavement-Crack Detection and Segmentation Based on Steerable Matched Filtering and an Active Contour Model. Journal of Computing in Civil Engineering, v.31, n.5, doi:10.1061/(ASCE)CP.1943-5487.0000695
Ong, G. P.; S. Noureldin and K. Sinha (2011). Technical report: Automated Pavement Condition Data Collection Quality Control, Quality Assurance, and Reliability. doi:10.5703/1288284314288
Osman, M. K.; M. H. M. Noor; A. Ibrahim; N. M. Tahir; N. M. Yusof and N. Z. Abidin (2019). Deep convolution neural network for crack detection on asphalt pavement. International Conference on Nanomaterials: Science, Engineering and Technology (ICoNSET) 2019. v. 1349, doi:10.1088/1742-6596/1349/1/012020
Paszke, A.; S. Gross; F. Massa; A. Lerer; J. Bradbury; G. Chanan; T. Killeen; Z. Lin; N. Gimelshein; L. Antiga; A. Desmaison; A. Kopf; E. Yang; Z. DeVito; M. Raison; A. Tejani; S. Chilamkurthy; B. Steiner; L. Fang; J. Bai and S. Chintala (2019). PyTorch: An Imperative Style, High-Performance Deep Learning Library. H. Wallach, H. Larochelle, A. Beygelzimer, F. dtextquotesingle Alché-Buc, E. Fox, & R. Garnett (Eds), Advances in Neural Information Processing Systems 32 (p. 8024–8035). Available at: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
Pianucci, M. N.; C. S. Pitombo and A. L. Cunha (2019) Previsão da demanda por viagens domiciliares através de método sequencial baseado em população sintética e redes neurais artificiais. v. 27, n.4, p. 1–23. doi:10.14295/transportes.v27i4.1406
Pierce, L. M. and N. D. Weitzel (2019). Automated Pavement Condition Surveys. Automated Pavement Condition Surveys. Transportation Research Board, Washington, D.C. doi:10.17226/25513
Silva, W. R. L. and D. S. Lucena (2018). Concrete Cracks Detection Based on Deep Learning Image Classification. Proceedings, v.2, n.8. doi:10.3390/icem18-05387
Sun, Y.; E. Salari, and E. Chou (2009). Automated pavement distress detection using advanced image processing techniques. Proceedings of 2009 IEEE International Conference on Electro/Information Technology. EIT 2009. p. 373–377. doi:10.1109/EIT.2009.5189645
Zhang, A.; K. C. P. Wang; B. Li; E. Yang; X. Dai; Y. Peng; Y. Fei; Y. Liu; J. Q. Li and C. Chen (2017). Automated Pixel-Level Pavement Crack Detection on 3D Asphalt Surfaces Using a Deep-Learning Network. Computer-Aided Civil and Infrastructure Engineering, v.32, n.10, p. 805–819. doi:10.1111/mice.12297
Zhang, L.; F. Yang; Y. D. Zhang and Y. J. Zhu (2016). Road crack detection using deep convolutional neural network. Proceedings - International Conference on Image Processing (ICIP). p. 3708–3712. doi:10.1109/ICIP.2016.7533052
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Ao submeter um manuscrito para publicação neste periódico, todos os seus autores concordam, antecipada e irrestritamente, com os seguintes termos:
- Os autores mantém os direitos autorais e concedem à Revista TRANSPORTES o direito de primeira publicação do manuscrito, sem nenhum ônus financeiro, e abrem mão de qualquer outra remuneração pela sua publicação pela ANPET.
- Ao ser submetido à Revista TRANSPORTES, o manuscrito fica automaticamente licenciado sob a Licença Creative Commons Attribution, que permite o compartilhamento do trabalho com reconhecimento da autoria e da publicação inicial neste periódico.
- Os autores têm autorização para assumir contratos adicionais separadamente, para distribuição não exclusiva da versão do trabalho publicada neste periódico (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento da publicação inicial nesta revista, desde que tal contrato não implique num endosso do conteúdo do manuscrito ou do novo veículo pela ANPET.
- Os autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) depois de concluído o processo editorial. Como a Revista TRANSPORTES é de acesso livre, os autores são estimulados a usar links para o site da Revista TRANSPORTES nesses casos.
- Os autores garantem ter obtido a devida autorização dos seus empregadores para a transferência dos direitos nos termos deste acordo, caso esses empregadores possuam algum direito autoral sobre o manuscrito. Além disso, os autores assumem toda e qualquer responsabilidade sobre possíveis infrações ao direito autoral desses empregadores, isentando a ANPET e a Revista TRANSPORTES de toda e qualquer responsabilidade neste sentido.
- Os autores assumem toda responsabilidade sobre o conteúdo do trabalho, incluindo as devidas e necessárias autorizações para divulgação de dados coletados e resultados obtidos, isentando a ANPET e a Revista TRANSPORTES de toda e qualquer responsabilidade neste sentido.