Caracterização de microesferas de vidro para retrorrefletividade de sinalização horizontal por técnicas de imagens

Autores

DOI:

https://doi.org/10.14295/transportes.v30i2.2584

Palavras-chave:

Caracterização de forma, CamSizer, AIMS, Trecho experimental

Resumo

A retrorrefletividade da sinalização horizontal ocorre devido à presença de microesferas de vidro. Esse trabalho tem como objetivo comparar o desempenho de duas microesferas: G1 – nacional, produzida a partir de vidro reciclado; e G2 – importada, produzida com vidro virgem. O trabalho avaliou a retrorrefletividade de um trecho experimental no qual foram utilizadas duas tintas à base de água de diferentes fabricantes. Os equipamentos utilizados para a caracterização de tamanho e forma das microesferas foram o CamSizer e o Aggregate Image Measurement System (AIMS). Os resultados indicaram diferentes tendências para o decaimento da retrorrefletividade, o que foi atribuído às características das microesferas. A microesfera de vidro G1 apresentou propriedades de forma inadequadas, o que resultou na redução da retrorrefletividade. A caracterização por imagem foi útil para estimar a retrorrefletividade antes de sua aplicação em campo. Assim, G1 não pode substituir G2, considerando os requisitos de retrorrefletividade do Brasil.

Downloads

Não há dados estatísticos.

Referências

AASHTO (2012) TP 81-12 - Standard Method of Test for Determining Aggregate Shape Properties by Means of Digital Image Analysis. American Association of State Highway and Transportation Officials, Washington, D.C., USA.

AASHTO (2013a) M247 – Standard Specification for Glass Beads Used in Pavement Markings. Association of State Highway and Transportation Officials, Washington, D.C., USA.

AASHTO (2013b) PP74 – Standard Practice for Determination of Size and Roundness of Glass Beads Used in Traffic Markings by Means of Computerized Optical Method. Association of State Highway and Transportation Officials, Washington, D.C., USA.

ABNT (2013) NBR 16184 – Horizontal roadmarking – Glass spheres and glass microspheres – Requirements and test methods. Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brazil.

Al-Rousan, T. M. (2004) Characterization of Aggregate Shape Properties Using a Computer Automated System. PhD Dissertation. Texas A&M University. USA. DOI: https://hdl.handle.net/1969.1/1485

ASTM (2011) E1710 - Standard Test Method for Measurement of Retroreflective Pavement Marking Materials with CEN-Prescribed Geometry Using a Portable. American Society for Testing Materials, West Conshohocken, PA, USA.

ASTM (2012) D713 - Standard Practice for Conducting Road Service Tests on Fluid Traffic Marking Materials. American Society for Testing Materials, West Conshohocken, PA, USA.

ASTM (2015) D1155 – Standard Test Method for Roundness of Glass Spheres. American Society for Testing Materials, West Conshohocken, PA, USA.

Babic, D.; T. E. Burghardt and D. Babic (2015) Application and Characteristics of Waterborne Road Marking Paint. International Journal for Traffic and Transport Engineering, n.5, v.2, p. 150–169. DOI: dx.doi.org/10.7708/ijtte.2015.5(2).06 DOI: https://doi.org/10.7708/ijtte.2015.5(2).06

Bosso, M.; K. L. Vasconcelos; L. L. Ho and L. L. B. Bernucci (2019) Use of Regression Trees to Predict Overweight Trucks from Historical Weigh-in-Motion Data. Journal of Traffic and Transportation Engineering (English Edition). n.7, v.6, p. 843-859. DOI: doi.org/10.1016/j.jtte.2018.07.004 DOI: https://doi.org/10.1016/j.jtte.2018.07.004

Carlson, P. J.; E. S. Park and C. K. Andersen (2009) Benefits of Pavement Markings. Transportation Research Record: Journal of the Transportation Research Board, n. 2107, v. 1, p. 59–68. DOI: doi.org/10.3141/2107-06 DOI: https://doi.org/10.3141/2107-06

Diógenes, L. M.; I. S. Bessa; V. T. F. Castelo Branco and E. Mahmoud (2018) The Influence of Stone Crushing Processes on Aggregate Shape Properties. Road Materials and Pavement Design, n.20, v.4, p.877–894. DOI: doi.org/10.1080/14680629.2017.1422792 DOI: https://doi.org/10.1080/14680629.2017.1422792

Fatemi, S.; M. K. Varkani; Z. Ranjbar and S. Bastani (2006) Optimization of The Water-Based Road-Marking Paint by Experimental Design, Mixture Method. Progress in Organic Coatings, n.55, v.4, p.337–344. DOI: doi.org/10.1016/j.porgcoat.2006.01.006 DOI: https://doi.org/10.1016/j.porgcoat.2006.01.006

FHWA (2007) Manual on Uniform Traffic Control Devices for Streets and Highways. Federal Highway Administration, Washington, D.C., USA.

Garboczi, E. and H. Azari (2011) Evaluating the Parameters of the Computerized Optical Method for Size and Roundness Measurement of Pavement Marking Glass Beads using X-ray Microtomography. In: 90th Annual Meeting of Transportation Research Board. Washington DC, USA.

Hummer, J. E.; W. Rasdorf and G. Zhang (2011) Linear Mixed-Effects Models for Paint Pavement-Marking Retroreflectivity Data. Journal of Transportation Engineering, n.137, v.10, p.705–716. DOI: doi.org/10.1061/(ASCE)TE.1943-5436.0000283 DOI: https://doi.org/10.1061/(ASCE)TE.1943-5436.0000283

Ibiapina, D. S.; L. M. Diógenes; V. T. F. Castelo Branco; S. M. Freitas; L. M. G. Motta. and D. F. Diógenes (2020) Análise estatística da qualidade das medidas das propriedades de forma de agragados com o uso do Processamento Digital de Imagens (PDI). Transportes, v. 28, n. 5, p. 1-12. DOI: doi.org/10.14295/transportes.v28i1.1865 DOI: https://doi.org/10.14295/transportes.v28i1.1865

Kalchbrenner, J. (1989) Large Glass Beads for Pavement markings. Transportation Research Record: Journal of the Transportation Research Board, n.1230, p. 28–36. DOI: onlinepubs.trb.org/Onlinepubs/ trr/1989/1230/1230-004.pdf

Masad, E.; D. Olcott; T. White and L. Tashman (2001) Correlation of Fine Aggregate Imaging Shape Indices with Asphalt Mixture Performance. Transportation Research Record: Journal of the Transportation Research Board, n.1757, p. 148–156. DOI: doi.org/10.3141/1757-17. DOI: https://doi.org/10.3141/1757-17

Migletz, J.; J. K. Fish and J. L. Graham (1994) Roadway Delineation Practices Handbook. Federal Highway Administration, Washington, D.C., USA.

Migletz, J.; J. L. Graham; D. W. Harwood and K. M. Bauer (2001) Service Life of Durable Pavement Markings. Transportation Research Record: Journal of the Transportation Research Board, (1749), 13–21. DOI: doi.org/10.3141/1749-03 DOI: https://doi.org/10.3141/1749-03

Mizera, C.M. (2008) Improving Pavement Marking Performance Through Contrasting New Methods to Quantify Marking Presence and Increasing Installation efficiencies through an Evaluation of Prototype Bead Guns. Master Thesis. Iowa State University. Iowa, USA. DOI: doi.org/10.31274/rtd-180813-16415

NTPEP (2004) NTPEP Best Practices. National Transportation Product Evaluation Program, Washington DC, USA.

Pike, A. M. and P. Songchitruksa, P (2015) Predicting Pavement Marking Service Life with Transverse Test Deck Data. Transportation Research Record: Journal of the Transportation Research Board, n. 2482, p. 16–22. DOI: doi.org/10.3141/2482-03 DOI: https://doi.org/10.3141/2482-03

Rich, M.J.; R. E. Maki and M. J. Morena (2002) Development of a pavement marking management system: measurement of glass sphere loading in retroreflectivity pavement paints. Transportation Research Record: Journal of the Transportation Research Board, v. 1794, n. 1, p. 49-54. DOI: doi.org/10.3141/1794-06 DOI: https://doi.org/10.3141/1794-06

Salles, L. S.; D. S. Pereira; D. L. K. Teixeira and L. P. Specht (2015) Avaliação retrorrefletiva de pintura de demarcação horizontal: peculiaridades e considerações sobre a norma e os requisitos mínimos nacionais. Transportes, v. 23, n. 3, p. 6-17. DOI: doi.org/10.14295/transportes.v23i3.886 DOI: https://doi.org/10.14295/transportes.v23i3.886

Sathyanarayanan, S.; V. Shankar and E. T. Donnell (2008) Pavement Marking Retroreflectivity Inspection Data: A Weibull Analysis. Transportation Research Record: Journal of the Transportation Research Board, n. 2055, p. 63–70. DOI: doi.org/10.3141/2055-08 DOI: https://doi.org/10.3141/2055-08

Smadi, O.; N. Hawkins; B. A. Bektas; P. Carlson; A. Pike and C. Davies (2014) Recommended Laboratory Test for Predicting the Initial Retroreflectivity of Pavement Markings from Glass Bead Quality. Transportation Research Record: Journal of the Transportation Research Board, n. 2440, p. 94–102. DOI: doi.org/10.3141/2440-12 DOI: https://doi.org/10.3141/2440-12

Texas DOT (2004). Pavement Marking Handbook. Texas Department of Transportation, Texas, USA.

Thamizharasan, A.; W. A. Sarasua and D. B. Clarke. (2003) A Methodology for Estimating the Lifecycle of Interstate Highway Pavement Marking Retroreflectivity. In: 83th Annual Meeting of Transportation Research Board. Washington DC, USA.

United Nations (2015) The 2030 Agenda for Sustainable Development. DOI: doi.org/10.1201/ b20466-7.

WHO (2015) Global Status Report on Road Safety 2015. World Health Organization. Genebra, Switzerland. DOI: doi.org/http://www.who.int/violence_injury_prevention/

WHO (2018) Global Status Report on Road Safety 2018. World Health Organization, Genebra, Switzerland.

Downloads

Publicado

06-08-2022

Como Citar

Nascimento Mazzoni, L. ., D. N. Machado, D. ., L. Vasconcelos, K. ., L. B. Bernucci, L. ., R. Linhares, G. ., & T. F. Castelo Branco, V. . (2022). Caracterização de microesferas de vidro para retrorrefletividade de sinalização horizontal por técnicas de imagens. TRANSPORTES, 30(2), 2584. https://doi.org/10.14295/transportes.v30i2.2584

Edição

Seção

Artigos