Desenvolvimento de modelos de previsão de coeficiente de atrito em pistas de pouso e decolagem brasileiras com Redes Neurais Artificiais

Autores

  • Túlio Rodrigues Ribeiro Federal University of Ceará, Fortaleza, Ceará, Brasil
  • Francisco Heber Lacerda de Oliveira Federal University of Ceará, Fortaleza, Ceará, Brasil https://orcid.org/0000-0002-4638-7621

DOI:

https://doi.org/10.58922/transportes.v31i2.2792

Palavras-chave:

Pavimentos aeroportuários, Resistência à derrapagem, Coeficiente de atrito, Segurança operacional

Resumo

As operações de pouso e decolagem representam as fases mais críticas de um voo, uma vez serem suscetíveis a diversos fatores que intervêm em seu desempenho, tais como a habilidade do piloto, as condições climáticas e de aderência pneu-pavimento. Nesse contexto, o coeficiente de atrito representa um parâmetro importante para a segurança operacional no quesito aderência pneu-pavimento. Dessa forma, esta pesquisa visa desenvolver modelos de previsão utilizando Redes Neurais Artificiais para o coeficiente de atrito medido a 3 e a 6 metros do eixo de pistas de pouso e decolagem (PPD) por meio de diferentes tipos de equipamento com a finalidade de auxiliar o operador de aeródromo quanto à garantia da segurança operacional, além de verificar a influência do grooving no desempenho do coeficiente de atrito. Os modelos desenvolvidos apresentaram resultados satisfatórios dada a complexidade do problema, demonstrando que, apesar de necessitar de aprimoramentos futuros, eles podem contribuir com a segurança das operações nas PPD.

Downloads

Não há dados estatísticos.

Referências

Abiodun, O.I.; A. Jantan; A.E. Omolara et al. (2018) State-of-the-art in artificial neural network applications: a survey. Heliyon, v. 4, n. 11, p. E00938. DOI: 10.1016/j.heliyon.2018.e00938. DOI: https://doi.org/10.1016/j.heliyon.2018.e00938

ANAC (2019) RBAC 153: Aeródromos - Operação, Manutenção e Resposta à Emergência. Emenda nº 4. Brasília: Agência Nacional de Aviação Civil.

ANAC (2021) Consulta Interativa – Indicadores do Mercado de Transporte Aéreo. Brasília: Agência Nacional de Aviação Civi.

Anupam, K.; S.K. Srirangam; A. Scarpas et al. (2013) Influence of temperature on tire-pavement friction analyses. Transportation Research Record, v. 2369, n. 1, p. 114-124. DOI: 10.3141/2369-13. DOI: https://doi.org/10.3141/2369-13

Aps, M. (2006) Classificação da Aderência Pneu-Pavimento Pelo Índice Combinado IFI – International Friction Index para Revestimentos Asfálticos. Thesis (Ph.D.). Escola Politécnica, Universidade de São Paulo, São Paulo, SP. DOI: 10.11606/T.3.2006.tde-11122006-144825 DOI: https://doi.org/10.11606/T.3.2006.tde-11122006-144825

Bocanegra, C.W.R. (2002) Procedimentos para Tornar Mais Efetivo o Uso das Redes Neurais Artificiais em Planejamento de Transportes. Dissertation (master of science). Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, SP. DOI: 10.11606/D.18.2002.tde-06032002-131951. DOI: https://doi.org/10.11606/D.18.2002.tde-06032002-131951

Bosurgi, G. and F. Trifirò (2005) A model based on artificial neural networks and genetic algorithms for pavement maintenance management. International Journal of Pavement Engineering, v. 6, n. 3, p. 201-209. DOI: 10.1080/10298430500195432. DOI: https://doi.org/10.1080/10298430500195432

Chelliah, T.; P. Stephanos; T. Smith et al. (2002) Developing a design policy to improve pavement surface characteristics. In Transportation Research Board (ed.) Pavement Evaluation Conference. Location: Transportation Research Board, p. 1-19.

Chen, J.S.; C.C. Huang; C.H. Chen et al. (2008) Effect of rubber deposits on runway pavement friction characteristics. Transportation Research Record, v. 2068, n. 1, p. 119-125. DOI: 10.3141/2068-13. DOI: https://doi.org/10.3141/2068-13

Costa, S.L.; V.T.F. Castelo Branco and E.F. Freitas (2017) Avaliação da aderência pneu-pavimento para diferentes tipos de pavimentos utilizando o International Friction Index (IFI). In Associação Nacional de Pesquisa e Ensino em Transporte (org.) XXXI Congresso da Associação Nacional de Pesquisa e Ensino em Transporte. Recife: ANPET, p. 1-12.

Domitrovic, J.; T. Rukavina and H. Dragovan (2018) Application of an artificial neural network in pavement management system. Technical Gazette, v. 25, p. 466-473. DOI: 10.17559/TV-20150608121810. DOI: https://doi.org/10.17559/TV-20150608121810

Flintsch, G.W.; J.P. Zaniewski and J. Delton (1996) Artificial neural network for selecting pavement rehabilitation projects. Transportation Research Record, v. 1524, n. 1, p. 185-193. DOI: 10.1177/0361198196152400122. DOI: https://doi.org/10.1177/0361198196152400122

Flintsch, G.W.; Y. Luo and I.L. Al-Qadi (2005) Analysis of the effect of pavement temperature on the frictional properties of flexible pavement surfaces. In Transportation Research Board (org.) 84th Transportation Research Board Annual Meeting. Washington, D.C.: Transportation Research Board.

Fonseca, O.A. (1990) Manutenção de Pavimentos de Aeroportos. Brasília: Diretoria de Engenharia da Aeronáutica/Divisão de Estudos e Projetos de Infraestrutura/Ministério da Aeronáutica.

Fwa, T.F.; W.T. Chan and C.T. Lim (1997) Decision framework for pavement friction management of airport runways. Journal of Transportation Engineering, v. 123, n. 6, p. 429-435. DOI: 10.1061/(ASCE)0733-947X(1997)123:6(429). DOI: https://doi.org/10.1061/(ASCE)0733-947X(1997)123:6(429)

Géron, A. (2017) Hands-on Machine Learning with Scikit-learn & TensorFlow. Sebastopol: O’Reilly.

Haykin, S. (2009) Neural Networks and Learning Machines (3rd ed.). Upper Saddle River, NJ: Pearson.

Hossain, M.I.; L.S.P. Gopisetti and M.S. Miah (2019) International roughness index prediction of flexible pavements using neural networks. Journal of Transportation Engineering, Part B: Pavements, v. 145, n. 1, p. 04018058. DOI: 10.1061/JPEODX.0000088. DOI: https://doi.org/10.1061/JPEODX.0000088

ICAO (2019) State of Global Aviation Safety: Safety Report. Montreal: International Civil Aviation Organization.

Kazda, A. and R.E. Caves (2007) Airport Design and Operation (2nd ed). New York: Elsevier Science.

Masad, E.; A. Rezaei; A. Chowdhury et al. (2009) Predicting Asphalt Mixture Skid Resistance Based on Aggregate Characteristics. Austin: Texas Transportation Institute. Available at: <https://static.tti.tamu.edu/tti.tamu.edu/documents/0-5627-1.pdf > (accessed 03/17/2023).

McDaniel, R.S.; K.J. Kowalski; A. Shah et al. (2010) Long Term Performance of a Porous Friction Course. West Lafayette: Taylor & Francis Online. DOI: https://doi.org/10.5703/1288284314284

Najafi, S.; G.W. Flintsch and S. Khaleghian (2019) Pavement friction management – artificial neural network approach. International Journal of Pavement Engineering, v. 20, n. 2, p. 125-135. DOI: 10.1080/10298436.2016.1264221. DOI: https://doi.org/10.1080/10298436.2016.1264221

Oliveira, P.V.S. (2017) Estudo Preliminar do Comportamento da Capacidade de Atrito nas Pistas de Pouso e Decolagem do Aeroporto Pinto Martins. Undergraduate thesis (bachelor degree). Universidade Federal do Ceará, Fortaleza, CE. Available at: <http://www.repositorio.ufc.br/handle/riufc/29491> (accessed 03/17/2023).

Quariguasi, J.B.F.; F.H.L. Oliveira and S.D.S. Reis (2021) A prediction model of the coefficient of friction for runway using artificial neural networks. Transportes, v. 29, n. 2, p. 2401. DOI: 10.14295/transportes.v29i2.2401. DOI: https://doi.org/10.14295/transportes.v29i2.2401

Ribeiro, A.J.A.; C.A.U. Silva and S.H.D.A. Barroso (2018) Metodologia de baixo custo para mapeamento geoté cnico aplicado à pavimentação. Transportes, v. 26, n. 2, p. 84-100. DOI: 10.14295/transportes.v26i2.1491. DOI: https://doi.org/10.14295/transportes.v26i2.1491

Santos, A.; E. Freitas; S. Faria et al. (2014) Degradation prediction model for friction in highways. In Murgante, B.; S. Misra; A.M.A.C. Rocha et al. (eds.) Computational Science and Its Applications - ICCSA 2014 14th International Conference, Guimarães, Portugal, June 30 - July 3, 204, Proceedings, Part III. Cham: Springer, p. 606-614. DOI: 10.1007/978-3-319-09150-1_44. DOI: https://doi.org/10.1007/978-3-319-09150-1_44

Shahin, M.Y. (2005) Pavement Management for Airports, Roads, and Parking Lots (2nd ed). New York: Springer

Skerritt, W.H. (1993) Aggregate type and traffic volume as controlling factors in bituminous pavement friction. Transportation Research Record, v. 1418, p. 22-29.

Susanna, A.; M. Crispino; F. Giustozzi et al. (2017) Deterioration trends of asphalt pavement friction and roughness from medium-term surveys on major Italian roads. International Journal of Pavement Research and Technology, v. 10, n. 5, p. 421-433. DOI: 10.1016/j.ijprt.2017.07.002. DOI: https://doi.org/10.1016/j.ijprt.2017.07.002

Thube, D.T. (2012) Artificial Neural Network (ANN) based pavement deterioration models for low volume roads in India. International Journal of Pavement Research and Technology, v. 5, n. 2, p. 115-120.

Yao, L.; Q. Dong; J. Jiang et al. (2019) Establishment of prediction models of asphalt pavement performance based on a novel data calibration method and neural network. Transportation Research Record, v. 2673, n. 1, p. 66-82. DOI: 10.1177/0361198118822501. DOI: https://doi.org/10.1177/0361198118822501

Downloads

Publicado

30-08-2023

Como Citar

Rodrigues Ribeiro, T., & Lacerda de Oliveira, F. H. (2023). Desenvolvimento de modelos de previsão de coeficiente de atrito em pistas de pouso e decolagem brasileiras com Redes Neurais Artificiais. TRANSPORTES, 31(2), e2792. https://doi.org/10.58922/transportes.v31i2.2792

Edição

Seção

Artigos