Dosagem de misturas asfálticas relacionada com o desempenho: uma revisão da literatura

Autores

DOI:

https://doi.org/10.58922/transportes.v32i3.2905

Palavras-chave:

Design. Asphalt mixture. Balanced mix design. Performance.

Resumo

Desde as primeiras aplicações de misturas asfálticas como materiais constituintes de camadas de pavimentos, no final do século XIX, surgiu a necessidade da adoção de uma metodologia para definir as proporções adequadas de cada componente da mistura, em um processo conhecido como dosagem. Atualmente, as metodologias de dosagem são, em geral, baseadas unicamente em parâmetros volumétricos, o que não permite avaliar o desempenho do material. Este artigo apresenta uma revisão das tendências passadas, presentes e futuras no projeto de misturas asfálticas, considerando diferentes métodos desenvolvidos na busca pela geração de misturas mais resistentes às demandas cada vez maiores do tráfego. São avaliados aspectos relacionados às metodologiais atuais de dosagem e suas limitações, o conceito e trabalhos atuais sobre mistura balanceada, assim como um resumo dos principais ensaios de desempenho de misturas asfálticas. Os resultados da revisão indicam uma clara evolução para procedimentos de dosagem que combinam volumetria e desempenho, promovendo a seleção mais adequada de materiais e suas combinações, além de otimizar a vida útil das misturas asfálticas no campo. No entanto, a pesquisa destaca lacunas significativas, como a necessidade de estudos experimentais que validem novos métodos de dosagem e a integração de ensaios de desempenho mais avançados. Essas lacunas representam oportunidades importantes para futuras pesquisas experimentais que podem contribuir para a inovação e a eficiência no projeto de misturas asfálticas.

Downloads

Não há dados estatísticos.

Referências

AASHTO (2020) PP 105 Standard Practice for Balanced Design of Asphalt Mixtures. Washington, D.C.: American Association of State Highway and Transportation Officials.

Al-Khayat, H.; D.E. Newcomb; F. Zhou et al. (2021) Evaluation of the minnesota asphalt mixtures based on balanced mix-design approach. Journal of Transportation Engineering, Part B: Pavements, v. 147, n. 3, p. 04021045. DOI: 10.1061/JPEODX.0000298. DOI: https://doi.org/10.1061/JPEODX.0000298

Almeida Jr., P.O.; F.D. Boeira; L.P. Specht et al. (2018) Avaliação laboratorial do tipo e teor de ligante e da granulometria na deformação permanente de misturas asfálticas. Transportes, v. 26, n. 2, p. 1-15. DOI: 10.14295/transportes.v26i2.1407. DOI: https://doi.org/10.14295/transportes.v26i2.1407

Alshamsi, K.S. (2006) Development of a Mix Design Methodology for Asphalt Mixtures with Analytically Formulated Aggregate Structures. Tese (doutorado). Louisiana State University and Agricultural & Mechanical College. Baton Rouge, LA.

Asphalt Institute (1997) Mix Design Methods for Asphalt. Manual Series No. 2 (MS-02). Lexington, KY: Asphalt Institute.

Bennert, T. (2021) Performance Evaluation of Asphalt Mixtures Statewide. New York: University Transportation Research Center, n. C-19-03.

Bennert, T.; E. Hass e E. Wass (2017) Round Robin Testing Program for the Overlay Tester. NJDOT B-10. Piscataway, NJ: Rutgers Center for Advanced Infrastructure and Transportation (CAIT).

Boz, I.; J. Habbouche; S.D. Diefenderfer et al. (2023) Evaluating the rutting potential of asphalt mixtures with simple and practical tests. Transportation Research Record: Journal of the Transportation Research Board. No prelo. DOI: 10.1177/03611981231207089. DOI: https://doi.org/10.1177/03611981231207089

Clyne, T.R.; M.P. Hanson; B.A. Chadbourn et al. (2001) Superpave Level One Mix Design at the Local Government Level. Minneapolis: University of Minnesota. Disponível em: <https://hdl.handle.net/11299/761> (acesso em 28/03/2023).

Cooper III, S.B.; L.N. Mohammad; S. Kabir et al. (2014) Balanced asphalt mixture design through specification modification: Louisiana’s experience. Transportation Research Record: Journal of the Transportation Research Board, v. 2447, n. 1, p. 92-100. DOI: 10.3141/2447-10. DOI: https://doi.org/10.3141/2447-10

Delorme, J.L.; C. De la Roche e L. Wendling (2007) LPC Bituminous Mixtures Design Guide. Paris: Laboratoire Central des Ponts et Chaussées.

Elias, N. (2020) Local Agency Balanced Mix Design with Superpave Volumetric Foundation. Tese (doutorado). University of Nevada. Reno.

Elnaml, I.; H. Dylla; J. Liu et al. (2023) Incorporating environmental impact analysis into Louisiana’s balanced asphalt mixture design. Transportation Research Record: Journal of the Transportation Research Board. No prelo. DOI: 10.1177/03611981231214231. DOI: https://doi.org/10.1177/03611981231214231

EN 13108-1 (2016) Bituminous Mixtures - Material Specifications - Part 1: Asphalt Concrete. Brussels.

EN 12697-12 (2018) Bituminous Mixtures - Test Methods Determination of the Water Sensitivity of Bituminous Specimens. Brussels.

FAA (2013) Hot Mix Asphalt Paving Handbook. Advisory Circular 150/5370-14B. Washington, D.C.: FAA.

Grobler, J.; J. Rebbechi e E. Denneman (2018) National Performance-Based Asphalt Specification Framework. Sydney: Austroads, n. AP-T331-18.

Hajj, E.Y.; P.E. Sebaaly e D. Weitzel (2005) Fatigue characteristics of Superpave and Hveem mixtures. Journal of Transportation Engineering, v. 131, n. 4, p. 302-310. DOI: 10.1061/(ASCE)0733-947X(2005)131:4(302). DOI: https://doi.org/10.1061/(ASCE)0733-947X(2005)131:4(302)

Hajj, E.Y.; A.J. Hand; R. Chkaiban et al. (2019) Index-Based Tests for Performance Engineered Mixture Designs for Asphalt Pavements. Washington, D.C.: Federal Highway Administration.

Hajj, E.Y.; T. Aschenbrener e D. Nener-Plante (2022) Examples of successful practices with state implementation of balanced design of asphalt mixtures. Transportation Research Record: Journal of the Transportation Research Board, v. 2676, n. 5, p. 44. DOI: 10.1177/03611981221084696. DOI: https://doi.org/10.1177/03611981221084696

Huang, B.; P.A. Polaczyk e W. Hu (2020) Asphalt Mixture Design and Performance Properties by Using a Gyratory Compactor. University of Tennessee, Knoxville; Department of Transportation. Federal Highway Administration, n. RES2016-02.

Jeong, J.; B.S. Underwood e Y.R. Kim (2021) Rutting performance prediction using index volumetrics relationships with stress sweep rutting test and Hamburg wheel-track test. Construction & Building Materials, v. 295, p. 123664. DOI: 10.1016/j. conbuildmat.2021.123664. DOI: https://doi.org/10.1016/j.conbuildmat.2021.123664

Jeong, J.; B.S. Underwood e Y.R. Kim (2022) Cracking performance predictions using index-volumetrics relationships with direct tension cyclic fatigue test and Illinois Flexibility Index Test (I-FIT). Construction & Building Materials, v. 315, p. 125631. DOI: 10.1016/j.conbuildmat.2021.125631. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125631

Kandhal, P.S. e W.S. Koehler (1985) Marshall mix design method: current practices. In Association of Asphalt Paving Technologists Proc. St Paul, MN: AAPT, v. 54.

Majidifard, H.; P. Rath; B. Jahangiri et al. (2023) Application of balanced mix design strategies to Missouri dense-graded asphalt mixtures. Transportation Research Record: Journal of the Transportation Research Board, v. 2677, n. 2, p. 910-923. DOI: 10.1177/03611981221110219. DOI: https://doi.org/10.1177/03611981221110219

Mogawer, W.S.; A.J. Austerman; K.D. Stuart et al. (2023) Comprehensive balanced mixture design protocol: design phase through production quality assurance. Transportation Research Record: Journal of the Transportation Research Board. No prelo. DOI: 10.1177/03611981231186422. DOI: https://doi.org/10.1177/03611981231186422

Nascimento, L.A.H. (2015) Implementation and Validation of the Viscoelastic Continuum Damage Theory for Asphalt Mixture and Pavement Analysis in Brazil. Tese (doutorado). North Carolina State University. North Carolina, USA.

Newcomb, D. e F. Zhou (2018) Balanced Design of Asphalt Mixtures. Minnesota: Department of Transportation, n. MN/RC 2018-22.

Park, D.W.; A. Chowdhury e J.W. Button (2001) Effects of Aggregate Gradation and Angularity on VMA and Rutting Resistance. College Station, TX: Texas A&M University.

Pellinen, T.K. (2004) Conceptual performance criteria for asphalt mixtures. Electronic Journal of the Association of Asphalt Paving Technologists, v. 73, p. 337-366.

Prowell, B.D. e R. Brown (2007) Superpave Mix Design: Verifying Gyration Levels in the Ndesign Table. Washington, D.C.: Transportation Research Board.

Rath, P.; L.U. Urra Contreras; B. Jahangiri et al. (2021) Performance grade of asphalt mixtures based on mixture performance test thresholds. Construction & Building Materials, v. 302, p. 124357. DOI: 10.1016/j.conbuildmat.2021.124357. DOI: https://doi.org/10.1016/j.conbuildmat.2021.124357

Roberts, F.L.; L.N. Mohammad e L.B. Wang (2002) History of hot mix asphalt mixture design in the United States. Journal of Materials in Civil Engineering, v. 14, n. 4, p. 279-293. DOI: 10.1061/(ASCE)0899-1561(2002)14:4(279). DOI: https://doi.org/10.1061/(ASCE)0899-1561(2002)14:4(279)

Rocha, M.L.; F.T.S. Aragão; L.A.H.D. Nascimento et al. (2023) Balanced mixture design framework for asphalt mixtures based on index-and performance-volumetrics relationships. Transportation Research Record: Journal of the Transportation Research Board, v. 2677, n. 10, p. 233-245. DOI: 10.1177/03611981231161063. DOI: https://doi.org/10.1177/03611981231161063

Salehiashani, S. (2021) Development of Performance-Related Specifications for Asphalt Mixtures in Ontario. Dissertação (mestrado). University of Waterloo. Waterloo, Ontario, Canada.

Seitllari, A.; I. Boz; J. Habbouche et al. (2023) Using mechanistic-empirical based analysis to evaluate rutting performance thresholds for balanced mix design tests. Construction & Building Materials, v. 400, p. 132762. DOI: 10.1016/j.conbuildmat.2023.132762. DOI: https://doi.org/10.1016/j.conbuildmat.2023.132762

Siddiqui, Z.; M.W. Trethewey e D.A. Anderson (1988) Variables affecting Marshall test results. Transportation Research Record: Journal of the Transportation Research Board, n. 1171, p. 139-148.

Tong, B.; J. Habbouche; G.W. Flintsch et al. (2023) Rutting performance evaluation of BMD surface mixtures with conventional and high RAP contents under full-scale accelerated testing. Materials, v. 16, n. 24, p. 7611. DOI: 10.3390/ma16247611. DOI: https://doi.org/10.3390/ma16247611

Vallerga, B.A. e W.R. Lovering (1985) Evolution of the Hveem stabilometer method of designing asphalt paving mixtures. In Association of Asphalt Paving Technologists Proc. St Paul, MN: AAPT, v. 54.

Veeraragavan, R.K.; D. Nener-Plante; L. Myers et al. (2022) Balanced mix design benchmarking of field-produced asphalt mixtures in Maine, US. Transportation Research Record: Journal of the Transportation Research Board, v. 2676, n. 5, p. 263-276. DOI: 10.1177/03611981211061552. DOI: https://doi.org/10.1177/03611981211061552

Walubita, L.F.; J. Hoeffner e T. Scullion (2013) New Generation Mix Designs: Laboratory-Field Testing and Modifications to Texas HMA Mix-Design Procedures. San Antonio: Texas A&M Transportation Institute, Texas A&M University System, College Station, and University of Texas, Report 0-6132-3.

Wang, Y.D.; A. Ghanbari; B.S. Underwood et al. (2021) Development of preliminary transfer functions for performance predictions in FlexPAVE™. Construction & Building Materials, v. 266, p. 121182. DOI: 10.1016/j.conbuildmat.2020.121182. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121182

Wang, Y.D.; J. Liu e J. Liu (2023) Integrating quality assurance in balance mix designs for durable asphalt mixtures: state-of-the-art literature review. Journal of Transportation Engineering, Part B: Pavements, v. 149, n. 1, p. 03122004. DOI: 10.1061/JPEODX. PVENG-957. DOI: https://doi.org/10.1061/JPEODX.PVENG-957

West, R.C.; F. Rodezno; F. Leiva et al. (2018) NCHRP Project 20-07/Task 406 Development of a Framework for Balanced Mix Design. Washington, D.C.: Transportation Research Board.

White, T.D. (1985) Marshall procedures for design and quality control of asphalt mixtures. In Association of Asphalt Paving Technologists Proc. St Paul, MN: AAPT, v. 54.

Yin, F.; N. Moore; C. Chen et al. (2023) Case study on using warm mix asphalt at reduced production temperatures for balanced mix design. Transportation Research Record: Journal of the Transportation Research Board. No prelo. DOI: 10.1177/03611981231214230. DOI: https://doi.org/10.1177/03611981231214230

Zhang, R.; J.E. Sias e E.V. Dave (2022) Using mix design information for modelling of fundamental viscoelasticity of asphalt mixtures. Construction & Building Materials, v. 329, p. 127029. DOI: 10.1016/j.conbuildmat.2022.127029. DOI: https://doi.org/10.1016/j.conbuildmat.2022.127029

Zhou, F.; S. Hu e T. Scullion (2006) Integrated Asphalt (Overlay) Mixture Design, Balancing Rutting and Cracking Requirements. College Station: Texas Transportation Institute, Texas A&M University System, n. FHWA/TX-06/0-5123-1.

Zhou, F.; T. Scullion; L. Walubita et al. (2014) Implementation of a performance-based mix design system in Texas. Application of Asphalt Mix Performance-Based Specifications, v. 32, p. 32-50.

Zhou, F.; R. Steger e W. Mogawer (2021) Development of a coherent framework for balanced mix design and production quality control and quality acceptance. Construction & Building Materials, v. 287, p. 123020. DOI: 10.1016/j.conbuildmat.2021.123020. DOI: https://doi.org/10.1016/j.conbuildmat.2021.123020

Zhou, J.; Z. Dong; L. Cao et al. (2022) Design parameter and method for airport asphalt mixture based on high-temperature performance. Construction & Building Materials, v. 326, p. 126802. DOI: 10.1016/j.conbuildmat.2022.126802. DOI: https://doi.org/10.1016/j.conbuildmat.2022.126802

Downloads

Publicado

27-09-2024

Como Citar

Lamha Rocha, M., Aragão, F. T. S., & Herrmann do Nascimento, L. A. (2024). Dosagem de misturas asfálticas relacionada com o desempenho: uma revisão da literatura. TRANSPORTES, 32(3), e2905. https://doi.org/10.58922/transportes.v32i3.2905

Edição

Seção

Artigos