Controle do fluxo principal em autoestradas por meio de veículos cooperativos equipados com controle adaptativo de cruzeiro

Authors

  • Jéssica Aquino Chaves
  • Rodrigo Castelan Carlson Universidade Federal de Santa Catarina
  • Eduardo Rauh Müller Universidade Federal de Santa Catarina
  • Werner Kraus Jr. Universidade Federal de Santa Catarina

DOI:

https://doi.org/10.14295/transportes.v26i3.1629

Keywords:

Mainstream Traffic Flow Control, Variable Speed Limits, Cooperative Vehicles.

Abstract

Mainstream Traffic Flow Control (MTFC) on freeways is a traffic control method that aims at regulating vehicle flow upstream from a bottleneck in order to maximize the freeway throughput. Using Variable Speed Limits (VSL) as MTFC actuators, an analysis of the influence of different penetration rates of cooperative vehicles on traffic is made. Cooperative vehicles were equipped with Adaptive Cruise Control (ACC) and receive as a reference value the VSL of the current freeway section. Simulations with the microscopic traffic simulator AIMSUN showed that an increase in penetration rate of cooperative vehicles contributed to performance improvement. Scenarios with a penetration rate of 10% had a performance improvement of 25%. The presence of more than 50% cooperative vehicles has a positive effect on traffic conditions. However, an auxiliary control method is necessary to facilitate the merging of vehicles into the mainstream flow in bottlenecks activated by freeway on-ramps.

Downloads

Download data is not yet available.

References

Carlson, R. C.; I. Papamichail e M. Papageorgiou (2013) Mainstream traffic flow control on freeways using variable speed limits. Transportes, v. 21, n. 3, p. 56–65. DOI: 10.4237/transportes.v21i3.694

Davis, L. (2016) Improving traffic flow at a 2-to-1 lane reduction with wirelessly connected, adaptive cruise control vehicles. Physica A: Statistical Mechanics and its Applications, v. 451, p. 320–332. DOI: 10.1016/j.physa.2016.01.093

Dowling, R.; A. Skabardonis e V. Alexiadis (2004) Traffic analysis toolbox volume III: guidelines for applying traffic microsimula-tion modeling software, Publication No. FHWA-HRT-04-040, U.S. Department of Transportation, Federal Highway Admin-istration.

Kayacan, E. (2017) Multiobjective H∞ Control for String Stability of Cooperative Adaptive Cruise Control Systems. IEEE Transactions on Intelligent Vehicles, v. 2, n. 1, p. 52–61. DOI: 10.1109/TIV.2017.2708607

Gipps, P. G. (1981) A behavioural car-following model for computer simulation. Transportation Research Part B: Methodolog-ical, v. 15, n. 2, p. 105–111. DOI: 10.1016/0191-2615(81)90037-0

Grumert, E.; X. Ma e A. Tapani (2015) Analysis of a cooperative variable speed limit system using microscopic traffic simula-tion. Transportation Research Part C: Emerging Technologies, v. 52, p. 173–186. DOI: 10.1016/j.trc.2014.11.004

Harms, I. M. e K. A. Brookhuis (2016) Dynamic traffic management on a familiar road: failing to detect changes in variable speed limits. Transportation Research Part F: Traffic Psychology and Behaviour, v. 38, p. 37–46. DOI: 10.1016/j.trf.2016.01.005

Hegyi, A.; B. Netten; M. Wang; W. Schakel; T. Schreiter; Y. Yuan; B. van Arem e T. Alkim (2013) A cooperative system based variable speed limit control algorithm against jam waves - an extension of the SPECIALIST algorithm. The 16th Interna-tional IEEE Conference on Intelligent Transportation Systems, p. 973–978. DOI: 10.1109/ITSC.2013.6728358

Iordanidou, G. R.; C. Roncoli; I. Papamichail e M. Papageorgiou (2014) Feedback-based mainstream traffic flow control for multiple bottlenecks on motorways. IEEE Transactions on Intelligent Transportation Systems, v. 16, n. 2, p. 610–621. DOI: 10.1109/TITS.2014.2331985

Kesting, A; M. Treiber; M. Schönhof e D. Helbing (2007) Extending adaptive cruise control to adaptive driving strategies. Transportation Research Record: Journal of the Transportation Research Board, n. 2000, p. 16–27. DOI: 10.3141/2000-03

Kattan, L.; B. Khondaker; O. Derushkina e E. Poosarla (2015) A probe-based variable speed limit system. Journal of Intelligent Transportation Systems, v. 19, n. 4, p. 339–354. DOI: 10.1080/15472450.2014.936294

Khondaker, B. e L. Kattan (2015a) Variable speed limit: an overview. Transportation Letters, v. 7, n. 5, p. 264–278. DOI: 10.1179/1942787514Y.0000000053

Khondaker, B. e L. Kattan (2015b) Variable speed limit: a microscopic analysis in a connected vehicle environment. Transpor-tation Research Part C: Emerging Technologies, v. 58, p. 146–159. DOI: 10.1016/j.trc.2015.07.014

Lin, T.-W.; S.-L. Hwang,e P. A. Green (2009) Effects of time-gap settings of adaptive cruise control (ACC) on driving perfor-mance and subjective acceptance in a bus driving simulator. Safety Science, v. 47, n. 5, p. 620-625. DOI: 10.1016/j.ssci.2008.08.004

Müller, E. R.; R. C. Carlson; W. Kraus e M. Papageorgiou (2015) Microsimulation analysis of practical aspects of traffic control with variable speed limits. IEEE Transactions on Intelligent Transportation Systems, v. 16, n. 1, p. 512–523. DOI: 10.1109/TITS.2014.2374167

Müller, E. R.; R. C. Carlson e W. Kraus (2016) Cooperative mainstream traffic flow control on freeways. IFAC-PapersOnLine. v. 49, n. 32, p. 89–94. DOI: 10.1016/j.ifacol.2016.12.195

Ntousakis, I. A.; I. K. Nikolos e M. Papageorgiou (2015) On microscopic modelling of adaptive cruise control systems. Trans-portation Research Procedia, v. 6, p. 111–127. DOI: 10.1016/j.trpro.2015.03.010

Papageorgiou, M.; C. Diakaki, V. Dinopoulou, A. Kotsialos e Wang, Y. (2003). Review of road traffic control strategies. Proceed-ings of the IEEE, 91(12), 2043-2067. DOI: 10.1109/JPROC.2003.819610

Papageorgiou, M.; E. Kosmatopoulos e I. Papamichail (2008) Effects of variable speed limits on motorway traffic flow. Trans-portation Research Record: Journal of the Transportation Research Board, n. 2047, v. 37–48. DOI: 10.3141/2047-05

Riggins, G.; R. Bertini; W. Ackaah e M. Margreiter (2016). Evaluation of driver compliance to displayed variable advisory speed limit systems: comparison between Germany and the U.S. Transportation Research Procedia, v. 15, p. 640–651. DOI: 10.1016/j.trpro.2016.06.054

Roncoli, C.; M. Papageorgiou e I. Papamichail (2015) Traffic flow optimisation in presence of vehicle automation and com-munication systems – Part II: optimal control for multi-lane motorways. Transportation Research Part C: Emerging Technol-ogies, v. 57, p. 260–275. DOI: 10.1016/j.trc.2015.05.011

Scarinci, R. e B. Heydecker (2014) Control concepts for facilitating motorway on-ramp merging using intelligent vehi-cles. Transport Reviews, v. 34, n. 6, p. 775–797. DOI: 10.1080/01441647.2014.983210

Shladover, S.; D. Su e X. Lu (2012) Impacts of cooperative adaptive cruise control on freeway traffic flow. Transportation Research Record: Journal of the Transportation Research Board, n. 2324, p. 63–70. DOI: 10.3141/2324-08

Soriguera, F.; I. Martínez-Josemaría e M. Menéndez (2015) Experimenting with dynamic speed limits on freeways. TRB 94th Annual Meeting Compendium of Papers, Washington, D.C., USA.

Wang, M.; W. Daamen; S. P. Hoogendoom e B. van Arem (2014) Rolling horizon control framework for driver assistance sys-tems. Part I: Mathematical formulation and non-cooperative systems. Transportation Research Part C: Emerging Technolo-gies, v. 40, p. 290–311. DOI: 10.1016/j.trc.2013.11.023

Published

2018-11-04

How to Cite

Chaves, J. A., Carlson, R. C., Müller, E. R., & Kraus Jr., W. (2018). Controle do fluxo principal em autoestradas por meio de veículos cooperativos equipados com controle adaptativo de cruzeiro. TRANSPORTES, 26(3), 134–144. https://doi.org/10.14295/transportes.v26i3.1629

Issue

Section

Artigos Vencedores do Prêmio ANPET Produção Científica