Effects of canola oil addition on the mechanical properties of asphalt mixtures

Authors

DOI:

https://doi.org/10.58922/transportes.v31i3.2857

Keywords:

Workability, Temperature, Bio-oils, Viscosity, Moisture resistance

Abstract

In recent years, numerous techniques have emerged to lower the mixing and compaction temperatures of traditional asphalt mixtures, aiming to reduce pollutant emissions and energy consumption. One approach involves incorporating chemical or organic additives, such as canola oil, into the asphalt binder PG 64-XX. This study investigates the impact of adding canola oil at concentrations of 1%, 2%, and 3% on the mechanical properties of asphalt mixtures produced using the modified binder. Mechanical characterization encompassed various tests, including tensile strength, induced moisture damage, resilience modulus, dynamic modulus, flow number, and fatigue life. Notably, the results revealed a significant reduction in temperature, with a maximum decrease of 5.2 °C observed in mixtures containing 3% canola oil. Although these mixtures did not meet the classification criteria for warm asphalt mixtures, they exhibited enhanced resistance to water-related deterioration and resulted in energy savings during the heating process for both the asphalt binder and aggregates in production. These findings highlight the potential benefits of incorporating canola oil into asphalt mixtures, demonstrating its positive influence on temperature reduction, moisture resistance, and energy efficiency in the production process.

Downloads

Download data is not yet available.

References

AASHTO (2014) AASHTO T 283: Standard Method of Test for Resistance of Compacted Asphalt Mixtures to MoistureInduced Damage. Washington, DC, EUA: American Association of State Highway and Transportation Officials.

Al-Omari, A.A.; T.S. Khedaywi e M.A. Khasawneh (2018) Laboratory characterization of asphalt binders modified with waste vegetable oil using SuperPave specifications, International Journal of Pavement Research and Technology, v. 11, n. 1, p. 68-76. DOI: 10.1016/j.ijprt.2017.09.004. DOI: https://doi.org/10.1016/j.ijprt.2017.09.004

ASTM (2010) ASTM D 4791: Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate. EUA: American Society for Testing and Materials.

ASTM (2014a) ASTM C 131M: Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. EUA: American Society for Testing and Materials.

ASTM (2014b) ASTM D 2419: Standard Test Method for Sand Equivalent Value of Soils and Fine Aggregate. EUA: American Society for Testing and Materials.

ASTM (2015a) ASTM C 127: Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. EUA: American Society for Testing and Materials.

ASTM (2015b) ASTM D 4402: Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. EUA: American Society for Testing and Materials.

ASTM (2015c) ASTM D 6925: Standard Test Method for Preparation and Determination of the Relative Density of Asphalt Mix Specimens by Means of the Superpave Gyratory Compactor. EUA: American Society for Testing and Materials.

ASTM (2018) ASTM D 7653: Standard Test Method for Determination of Trace Gaseous Contaminants in Hydrogen Fuel by Fourier Transform Infrared (FTIR) Spectroscopy. EUA: American Society for Testing and Materials.

ASTM (2019) ASTM D 2872: Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt (Rolling ThinFilm Oven Test). EUA: American Society for Testing and Materials.

ASTM (2020a) ASTM D 36M-14: Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). EUA: American Society for Testing and Materials.

ASTM (2020b) ASTM D 5M: Standard Test Method for Penetration of Bituminous Materials. EUA: American Society for Testing and Materials.

Barros, A.G.; L.C.F.L. Lucena e A.G. Herandez (2022) Addition of encapsulated soybean oil and waste cooking oil in asphalt mixtures: effects on mechanical properties and self-healing of fatigue damage, Journal of Materials in Civil Engineering, v. 34, n. 4, p. 04022002. DOI: 10.1061/(ASCE)MT.1943-5533.0004134. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0004134

Barros, L.M. (2017) Deformação Permanente de Misturas Asfálticas: Avaliação do Desempenho pelo Critério de Flow Number de Misturas Quentes e Mornas. Dissertação (mestrado). Programa de Pós-Graduação em Engenharia Civil, UFRGS, Porto Alegre, RS, Brasil.

Bernucci, L.B.; L.M.G. Motta; J.A.P. Ceratti et al. (2022) Pavimentação Asfáltica – Formação Básica para Engenheiros. (2a ed.). Rio de Janeiro: Abeda.

Carvalho, J.R. (2018) Estudo do comportamento do asfalto modificado com óleo de girassol visando à obtenção de misturas mornas. Dissertação (mestrado). Universidade Federal de Campina Grande, Campina Grande, PB, Brasil.

Carvalho, J. R. (2022). Avaliação de diferentes tecnologias de misturas asfálticas mornas com a incorporação de elevadas quantidades de material fresado. Tese (Doutorado). Universidade Federal de Campina Grande, Campina Grande, PB, Brasil.

Carvalho, J.R.; A.G. Barros; A.E.F.L. Lucena et al. (2022) Mechanical performance of asphalt mixture composed of asphalt binder modified with sunflower oil, Revista Transportes, v. 30, n. 3, p. 2703. DOI: 10.14295/transportes.v30i3.2703. DOI: https://doi.org/10.14295/transportes.v30i3.2703

Cavalcante, F.P. (2016) Efeito da adição dos óleos de ricimus communis e linus usitatissimum nas propriedades reológicas do cimento asfáltico de petróleo puro e modificado. Tese (doutorado). Universidade Federal de Campina Grande, Campina Grande, PB, Brasil.

Costa, D.B.; O.M. Melo Neto; L.C.F.L. Lucena et al. (2023) Effects of recycling agents and methods on the fracture and moisture resistance of asphalt mixtures with high RAP contents, Construction & Building Materials, v. 367, p. 130312. DOI: 10.1016/j.conbuildmat.2023.130312. DOI: https://doi.org/10.1016/j.conbuildmat.2023.130312

DNIT (2006) DNIT- 031/06-ME: Concreto asfáltico – Especificação de serviço. Rio de Janeiro: Departamento Nacional de Infraestrutura e Transporte.

DNIT (2018a) DNIT-135/18-ME: Misturas asfálticas – Determinação do módulo de resiliência. Rio de Janeiro: Departamento Nacional de Infraestrutura e Transporte.

DNIT (2018b) DNIT-136/18-ME: Determinação da resistência à tração por compressão diametral – Método de ensaio. Rio de Janeiro: Departamento Nacional de Infraestrutura e Transporte.

DNIT (2018c) DNIT-180/18-ME: Misturas asfálticas – Determinação do dano por umidade induzida. Rio de Janeiro: Departamento Nacional de Infraestrutura e Transporte.

DNIT (2018d) DNIT-183/18-ME: Ensaio de fadiga por compressão diametral à tensão controlada – Método de ensaio. Rio de Janeiro: Departamento Nacional de Infraestrutura e Transporte.

DNIT (2018e) DNIT-184/18-ME: Ensaio uniaxial de carga repetida para determinação da resistência à deformação permanente - Método de ensaio. Rio de Janeiro: Departamento Nacional de Infraestrutura e Transporte.

DNIT (2019) DNIT-416/19- ME: Misturas asfálticas – Determinação do módulo dinâmico – Método de ensaio. Rio de Janeiro: Departamento Nacional de Infraestrutura e Transporte.

Ferrotti, G.; D. Ragni; X. Lu et al. (2017) Effect of warm mix asphalt chemical additives on the mechanical performance of asphalt binders, Materials and Structures, v. 50, n. 5, p. 226. DOI: 10.1617/s11527-017-1096-5. DOI: https://doi.org/10.1617/s11527-017-1096-5

Filho, N.W. (2013) Avaliação da Influência da Redução das Temperaturas de Usinagem e de Compactação no Comportamento Mecânico de Misturas Asfálticas Mornas. Dissertação (mestrado). Universidade Federal do Ceará, Fortaleza, CE, Brasil.

Gao, J.; H. Wang; C. Liu et al. (2020) High-temperature rheological behavior and fatigue performance of lignin modified asphalt binder, Construction & Building Materials, v. 230, p. 117063. DOI: 10.1016/j.conbuildmat.2019.117063. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117063

Gawel, I.; F. Czechowski e J. Kosno (2016) An environmental friendly anti-ageing additive to bitumen, Construction & Building Materials, v. 110, p. 42-47. DOI: 10.1016/j.conbuildmat.2016.02.004. DOI: https://doi.org/10.1016/j.conbuildmat.2016.02.004

Hu, X.; S. Fan; X. Li et al. (2020) Exploring the feasibility of using reclaimed paper-based asphalt felt waste as a modifier in asphalt-binders, Construction & Building Materials, v. 234, p. 117379. DOI: 10.1016/j.conbuildmat.2019.117379. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117379

Melo Neto, O.M.; A.M.G.D. Mendonça; J.K.G. Rodrigues et al. (2022c) Rheological study of asphalt binder modified by cotton and copaiba oils, Revista Cubana de Ingeniería, v. 13, n. 1, p. e315. Disponível em: <https://rci.cujae.edu.cu/index.php/rci/article/view/816> (acesso em: 02/11/2022).

Melo Neto, O.M.; I.M. Silva; L.C.F.L. Lucena et al. (2022a) Viability of recycled asphalt mixtures with soybean oil sludge fatty acid, Construction & Building Materials, v. 349, p. 128728. DOI: 10.1016/j.conbuildmat.2022.128728. DOI: https://doi.org/10.1016/j.conbuildmat.2022.128728

Melo Neto, O.M.; I.M. Silva; L.C.F.L. Lucena et al. (2022b) Physical and rheological study of asphalt binders with soybean oil sludge and soybean oil sludge fatty acid, Waste and Biomass Valorization, v. 13, p. 1945-1967. DOI: 10.1007/s12649-022-01951-2. DOI: https://doi.org/10.1007/s12649-022-01951-2

Mendonça, A.M.G.D.; O.M. Melo Neto; J.K.G. Rodrigues et al. (2022a) Characterisation of modified asphalt mixtures with lignin of pinus and eucalyptus woods, Australian Journal of Civil Engineering. In press. DOI: 10.1080/14488353.2022.2089376. DOI: https://doi.org/10.1080/14488353.2022.2089376

Mendonça, A.M.G.D.; O.M. Melo Neto; J.K.G. Rodrigues et al. (2022b) Physicochemical and rheological effects of the incorporation of micronized polyethylene terephthalate in asphalt binder, Petroleum Science and Technology, v. 40, n. 7, p. 822-838. DOI: 10.1080/10916466.2021.2007124. DOI: https://doi.org/10.1080/10916466.2021.2007124

Mendonça, A.M.G.D.; O.M. Melo Neto; J.K.G. Rodrigues et al.(2022c) Análise física-reológica de ligantes asfálticos modificados com óleo de algodão refinado para uso em misturas asfálticas mornas, Revista Cubana de Ingeniería, v. 13, n. 2, p. e325. Disponível em: <https://rci.cujae.edu.cu/index.php/rci/article/view/830> (acesso em: 02/11/2022).

Moraes, T.M.R.P. (2018) Utilização da Cera de Carnaúba como Aditivo Redutor de Temperaturas de Usinagem e Compactação de Misturas Asfálticas. Dissertação (mestrado). Universidade Federal de Campina Grande, Campina Grande, PB, Brasil.

Moraes, T.M.R.P.; A.E.F.L. Lucena; O.M. Melo Neto et al. (2022) Efeitos do uso da cera de carnaúba como aditivo redutor de temperaturas de mistura e compactação no desempenho mecânico de misturas asfálticas, Revista Matéria, v. 27, n. 4, p. e20220192. DOI: 10.1590/1517-7076-rmat-2022-0192. DOI: https://doi.org/10.1590/1517-7076-rmat-2022-0192

Mori, C.; G.O. Tomm and P.E.P. Ferreira. (2014). Aspectos econômicos e conjunturais da cultura da canola no mundo e no Brasil. Passo Fundo: Embrapa Trigo. (Embrapa Trigo, Documentos online, 149).

Morilha Jr, A. (2004) Estudo sobre a ação de modificadores no envelhecimento dos ligantes asfálticos e nas propriedades mecânicas e de fadiga das misturas asfálticas. Dissertação (mestrado). Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil.

Palacio, C.H.P. e J.E.C. Maquillón (2013) Diseño de mezcla asfáltica tibia a partir de la mezcla de asfalto y aceite crudo de palma, Dyna, v. 80, n. 179, p. 99-108.

Porto, T.R.; A.E.F.L. Lucena; T.M.R.P. Moraes et al. (2023) The use of iron oxide in asphalt mixtures to reduce the effects of urban heat islands, Case Studies in Construction Materials, v. 18, p. e01709. DOI: 10.1016/j.cscm.2022.e01709. DOI: https://doi.org/10.1016/j.cscm.2022.e01709

Portugal, A.C.X.; L.C.F.L. Lucena; A.E.F.L. Lucena et al. (2017) Rheological properties of asphalt binders prepared with maize oil, Construction & Building Materials, v. 152, p. 1015-1026. DOI: 10.1016/j.conbuildmat.2017.07.077. DOI: https://doi.org/10.1016/j.conbuildmat.2017.07.077

Portugal, A.C.X.; L.C.F.L. Lucena; A.E.F.L. Lucena et al. (2018) Evaluating the rheological effect of asphalt binder modification using soybean oil, Petroleum Science and Technology, v. 36, n. 17, p. 1351-1360. DOI: 10.1080/10916466.2017.1322980. DOI: https://doi.org/10.1080/10916466.2017.1322980

Rodrigues, F. (2016) Produção mundial de óleos vegetais deve bater recorde em 2016. BiodieselBR. Disponível em: <https://www.biodieselbr.com/noticias/materia-prima/soja1/producao-mundial-oleos-vegetais-deve-baterrecorde-2016-280916> (acesso em: 02/11/2022).

Sales, P.M. (2015) Avaliação das Características Físicas e Mecânicas de Misturas Asfálticas Modificadas com Adição do CCBIT. Dissertação (mestrado). Universidade Federal de Campina Grande, Campina Grande, PB, Brasil.

Silva, C.C.V.P.; O.M. Melo Neto; J.K.G. Rodrigues et al. (2022) Evaluation of the rheological effect of asphalt binder modification using Linum usitatissimum oil, Revista Matéria, v. 27, n. 3, p. e20220138. DOI: 10.1590/1517-7076- rmat-2022-0138 DOI: https://doi.org/10.1590/1517-7076-rmat-2022-0138

Silva, G.G. (2016) Estudos Reológicos de Aditivos Utilizados na Fabricação de Misturas Mornas. Dissertação (mestrado). Universidade Federal de Campina Grande, Campina Grande, PB, Brasil.

Silva, J.A.A. (2011) Estudo das Propriedades Físicas, de Estado e Mecânicas de Misturas Asfálticas Párea os Revestimentos de Pista de Aeródromo. Dissertação (mestrado). Universidade Federal de Campina Grande, Campina Grande, PB, Brasil.

Souza, J.L.S. (2012) Estudo das Propriedades Mecânicas de Misturas Asfálticas com Cimento Asfáltico de Petróleo Modificado com Óleo de Mamona. Dissertação (mestrado). Universidade Federal de Campina Grande, PB, Brasil.

Su, N.; F. Xiao; J. Wang et al. (2018) Productions and applications of bio-asphalts – a review, Construction & Building Materials, v. 183, p. 578-591. DOI: 10.1016/j.conbuildmat.2018.06.118. DOI: https://doi.org/10.1016/j.conbuildmat.2018.06.118

Uchoa, A.F.J.; W.S. Rocha; J.P.M. Feitosa et al. (2021) Bio-based palm oil as an additive for asphalt binder: chemical characterization and rheological properties, Construction & Building Materials, v. 285. DOI: 10.1016/j.conbuildmat.2021.122883. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122883

Wang, C.; L. Xue; W. Xie et al. (2018) Laboratory investigation on chemical and rheological properties of bioasphalt binders incorporating waste cooking oil, Construction & Building Materials, v. 167, p. 348-358. DOI: 10.1016/j.conbuildmat.2018.02.038. DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.038

Yu, H.; Z. Leng; Z. Dong et al. (2018) Workability and mechanical property characterization of asphalt rubber mixtures modified with various warm mix asphalt additives, Construction & Building Materials, v. 175, p. 392-401. DOI: 10.1016/j.conbuildmat.2018.04.218. DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.218

Published

2023-12-31

How to Cite

Guerra, T. D., Elísio de Figueirêdo Lopes Lucena, A., Costa Beserra, D. ., Maria Gonçalves Duarte Mendonça, A. ., de Medeiros Melo Neto, O., & Oliveira Justo, A. . (2023). Effects of canola oil addition on the mechanical properties of asphalt mixtures. TRANSPORTES, 31(3), e2857. https://doi.org/10.58922/transportes.v31i3.2857

Issue

Section

Artigos