Relação espacial entre dados sociodemográficos e de acesso ao varejo e as entregas do comércio eletrônico: o caso de Belo Horizonte (Brasil)

Autores

DOI:

https://doi.org/10.58922/transportes.v31i2.2820

Palavras-chave:

Entregas de comércio eletrônico, Transporte urbano de mercadorias, Análise espacial

Resumo

As entregas ao domicílio derivadas do comércio eletrônico são uma grande preocupação em áreas urbanas devido às suas externalidades negativas associadas. Apesar de muitas soluções para esse problema, a falta de compreensão do padrão espacial das entregas urbanas torna difícil a implementação dessas estratégias. Neste artigo é analisada a relação espacial entre dados sociodemográficos e de acesso ao varejo e entregas de comércio eletrônico em Belo Horizonte (Brasil) usando dados oficiais em nível de bairro (número de lojas tradicionais de varejo, gênero, renda, idade, raça e tamanho da família) e dados operacionais de uma empresa de transporte. O índice Global Moran’s I indicou a dependência espacial das entregas do e-commerce. Os resultados de um modelo de regressão geograficamente ponderada mostraram um efeito espacial positivo do acesso ao varejo tradicional, mulheres, população asiática, idade de 20 a 29 anos e renda. Além disso, foi identificado efeito espacial negativo para o tamanho do domicílio, idade de 18 a 19 anos e população negra. Além disso, os coeficientes estimados apresentam uma pequena variabilidade espacial, indicando homogeneidade na relação espacial. A uniformidade dos parâmetros permite concluir que estratégias alternativas de entrega em domicílio podem ser implementadas de forma equitativa em todo o território para reduzir as externalidades das entregas de e-commerce e, consequentemente, contribuir para o desenvolvimento sustentável.

Downloads

Não há dados estatísticos.

Referências

Beckers, J.; I. Cárdenas and A. Verhetsel (2018) Identifying the geography of online shopping adoption in Belgium. Journal of Retailing and Consumer Services, v. 45, p. 33-41. DOI: 10.1016/j.jretconser.2018.08.006. DOI: https://doi.org/10.1016/j.jretconser.2018.08.006

Beckers, J.; A. Verhetsel (2021) The sustainability of the urban layer of e-commerce deliveries: the Belgian collection and delivery point networks. European Planning Studies, v. 29, p. 2300-2319. DOI: 10.1080/09654313.2021.1921118. DOI: https://doi.org/10.1080/09654313.2021.1921118

Bivand, R.S.; E. Pebesma and V. Gomez-Rubio (2013) Applied Spatial Data Analysis with R. New York: Springer. DOI: 10.1007/978-1-4614-7618-4. DOI: https://doi.org/10.1007/978-1-4614-7618-4

Blasio, G. (2008) Urban-rural differences in internet usage, e-commerce, and e-banking: evidence from Italy. Growth and Change, v. 39, n. 2, p. 341-367. DOI: 10.1111/j.1468-2257.2008.00422.x. DOI: https://doi.org/10.1111/j.1468-2257.2008.00422.x

Cao, X.; Q. Chen and S. Choo (2013) Geographic distribution of e-shopping: application of structural equation models in the Twin Cities of Minnesota. Transportation Research Record, v. 2383, n. 1, p. 18-26. DOI: 10.3141/2383-03. DOI: https://doi.org/10.3141/2383-03

Cheng, C.; T. Sakai; A. Alho et al. (2021) Exploring the relationship between locational and household characteristics and e-commerce home delivery demand. Logistics, v. 5, n. 2, p. 29. DOI: 10.3390/logistics5020029. DOI: https://doi.org/10.3390/logistics5020029

Clarke, G.; C. Thompson and M. Birkin (2015) The emerging geography of e-commerce in British retailing. Regional Studies, Regional Science, v. 2, n. 1, p. 371-391. DOI: 10.1080/21681376.2015.1054420. DOI: https://doi.org/10.1080/21681376.2015.1054420

Eurostat (2022) E-commerce statistics for individuals. Available at: <https://ec.europa.eu/eurostat/statisticsexplained/index.php?title=E-commerce_statistics_for_individuals> (accessed 04/04/2023).

Farag, S.; M. Dijst and M. Lanzendorf (2003) Exploring the use of e-shopping and its impact on personal travel behavior in The Netherlands. Transportation Research Record, v. 1858, n. 1, p. 47-54. DOI: 10.3141/1858-07. DOI: https://doi.org/10.3141/1858-07

Farag, S.; T. Schwanen and M. Dijst (2005) Empirical investigation of online searching and buying and their relationship to shopping trips. Transportation Research Record, v. 1926, n. 1, p. 242-251. DOI: 10.1177/0361198105192600128. DOI: https://doi.org/10.1177/0361198105192600128

Farag, S.; T. Schwanen; M. Dijst et al. (2007) Shopping online and/or in-store? A structural equation model of the relationships between e-shopping and in-store shopping. Transportation Research Part A, Policy and Practice, v. 41, n. 2, p. 125-141. DOI: 10.1016/j.tra.2006.02.003. DOI: https://doi.org/10.1016/j.tra.2006.02.003

Farag, S.; K.J. Krizek and M. Dijst (2006a) E-shopping and its relationship with in-store shopping: empirical evidence from The Netherlands and the USA. Transport Reviews, v. 26, n. 1, p. 43-61. DOI: 10.1080/01441640500158496. DOI: https://doi.org/10.1080/01441640500158496

Farag, S.; J. Weltevreden; T. van Rietbergen et al. (2006b) E-shopping in the Netherlands: does geography matter?. Environment and Planning B: Planning and Design, v. 33, n. 1, p. 59-74. DOI: 10.1068/b31083. DOI: https://doi.org/10.1068/b31083

Fotheringham, A.S. and T.M. Oshan (2016) Geographically weighted regression and multicollinearity: dispelling the myth. Journal of Geographical Systems, v. 18, n. 4, p. 303-329. DOI: 10.1007/s10109-016-0239-5. DOI: https://doi.org/10.1007/s10109-016-0239-5

Fotheringham, A.S.; C. Brunsdon and M. Charlton (2002) Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. West Sussex: John Wiley and Sons.

Fox, J. and S. Weisberg (2019) An R Companion to Applied Regression. Thousand Oaks: Sage.

Gollini, I.; B. Lu; M. Charlton et al. (2015) GWmodel: an R package for exploring spatial heterogeneity using geographically weighted models. Journal of Statistical Software, v. 63, n. 17, p. 1-50. DOI: 10.18637/jss.v063.i17. DOI: https://doi.org/10.18637/jss.v063.i17

Grekousis, G. (2020) Spatial Analysis Methods and Practice: Describe – Explore – Explain through GIS. Cambridge: Cambridge University Press. DOI: 10.1017/9781108614528. DOI: https://doi.org/10.1017/9781108614528

Hair, J.F.; W.C. Black; B.J. Babin et al. (2019) Multivariate Data Analysis. Hampshire: Cengage.

Hood, N.; R. Urquhart; A. Newing et al. (2020) Sociodemographic and spatial disaggregation of e-commerce channel use in the grocery market in Great Britain. Journal of Retailing and Consumer Services, v. 55, p. 102076. DOI: 10.1016/j.jretconser.2020.102076. DOI: https://doi.org/10.1016/j.jretconser.2020.102076

IBGE (2020) IBGE Cidades –Belo Horizonte. Available at: <https://cidades.ibge.gov.br/brasil/mg/belo-horizonte/panorama> (accessed 06/22/2023).

Jaller, M. and A. Pahwa (2020) Evaluating the environmental impacts of online shopping: a behavioral and transportation approach. Transportation Research Part D, Transport and Environment, v. 80, p. 102223. DOI: 10.1016/j.trd.2020.102223. DOI: https://doi.org/10.1016/j.trd.2020.102223

James, G; D. Witten; T. Hastie et al.(2015) An Introduction to Statistical Learning: With Applications in R. New York: Springer.

Jongen, W. (2018) The End of Online Shopping: The Future of Retail in an Always Connected World. New Jersey: World Scientific Publishing Company. DOI: 10.1142/11106. DOI: https://doi.org/10.1142/11106

Kirby-Hawkins, E.; M. Birkin and G. Clarke (2019) An investigation into the geography of corporate e-commerce sales in the UK grocery market. Environment and Planning. B, Urban Analytics and City Science, v. 46, n. 6, p. 1148-1164. DOI: 10.1177/2399808318755147. DOI: https://doi.org/10.1177/2399808318755147

Krizek, K.J.; Y. Li and S.L. Handy (2005) Spatial attributes and patterns of use in household-related information and communications technology activity. Transportation Research Record, v. 1926, n. 1, p. 252-259. DOI: 10.1177/0361198105192600129. DOI: https://doi.org/10.1177/0361198105192600129

Lee, R.J.; I.N. Sener and S.L. Handy (2015) Picture of online shoppers: specific focus on Davis, California. Transportation Research Record, v. 2496, n. 1, p. 55-63. DOI: 10.3141/2496-07. DOI: https://doi.org/10.3141/2496-07

Lee, R.J.; I.N. Sener; P.L. Mokhtarian et al. (2017) Relationships between the online and in-store shopping frequency of Davis, California residents. Transportation Research Part A, Policy and Practice, v. 100, p. 40-52. DOI: 10.1016/j.tra.2017.03.001. DOI: https://doi.org/10.1016/j.tra.2017.03.001

Loo, B.P.Y. and B. Wang (2018) Factors associated with home-based e-working and e-shopping in Nanjing, China. Transportation, v. 45, n. 2, p. 365-384. DOI: 10.1007/s11116-017-9792-0. DOI: https://doi.org/10.1007/s11116-017-9792-0

Lu, B.; M. Charlton; P. Harris et al. (2014) Geographically weighted regression with a non-Euclidean distance metric: a case study using hedonic house price data. International Journal of Geographical Information Science, v. 28, n. 4, p. 660-691. DOI: 10.1080/13658816.2013.865739. DOI: https://doi.org/10.1080/13658816.2013.865739

Moran, P.A.P. (1950) Notes on continuous stochastic phenomena. Biometrika, v. 37, n. 1-2, p. 17-23. DOI: 10.1093/biomet/37.1-2.17. PMid:15420245. DOI: https://doi.org/10.1093/biomet/37.1-2.17

Motte-Baumvol, B.; L. Belton-Chevallier; L. Dablanc et al. (2017) Spatial dimensions of e-shopping in France. Asian Transport Studies, v. 4, n. 3, p. 585-600. DOI: 10.11175/eastsats.4.585.

Nielsen (2022) Webshoppers. Available at: <https://nielseniq.com/global/pt/landing-page/ebit/nielseniq-ebitbrasil/webshoppers/> (accessed 04/04/2023).

OECD (2020) E-commerce in the time of COVID-19. Available at: <https://www.oecd.org/coronavirus/policyresponses/e-commerce-in-the-time-of-covid-19-3a2b78e8/> (accessed 04/04/2023).

Rai, H.B.; S. Verlinde and C. Macharis (2019) The “next day, free delivery” myth unravelled. International Journal of Retail & Distribution Management, v. 47, n. 1, p. 39-54. DOI: 10.1108/IJRDM-06-2018-0104. DOI: https://doi.org/10.1108/IJRDM-06-2018-0104

Ren, F. and M.-P. Kwan (2009) The impact of geographic context on e-shopping behavior. Environment and Planning B: Urban Analytics and City Science, v. 36, n. 2, p. 262-278. DOI: 10.1068/b34014t. DOI: https://doi.org/10.1068/b34014t

Saphores, J.-D. and L. Xu (2021) E-shopping changes and the state of e-grocery shopping in the US-evidence from national travel and time use surveys. Research in Transportation Economics, v. 87, p. 100864. DOI: 10.1016/j.retrec.2020.100864. DOI: https://doi.org/10.1016/j.retrec.2020.100864

Sener, I.N. and P.R. Reeder (2012) An examination of behavioral linkages across ICT choice dimensions: copula modeling of telecommuting and teleshopping choice behavior. Environment and Planning A: Economy and Space, v. 44, n. 6, p. 1459-1478. DOI: 10.1068/a44436. DOI: https://doi.org/10.1068/a44436

Silveira, L.S. and S.N. Leão (2020) O impacto da segregação ocupacional por gênero e raça na desigualdade de renda no Brasil em três décadas (1986-2015). Revista Latinoamericana de Población, v. 14, n. 27, p. 41-76. DOI: 10.31406/relap2020.v14.i12.n27.2. DOI: https://doi.org/10.31406/relap2020.v14.i12.n27.2

Song, Z. (2021) The geography of online shopping in China and its key drivers. Environment and Planning. B, Urban Analytics and City Science, v. 49, n. 1, p. 259-274. DOI: 10.1177/23998083211002189. DOI: https://doi.org/10.1177/23998083211002189

Statista (2021) Distribution of digital buyers in the United States as of February 2020, by age group. Available at: <https://www.statista.com/statistics/469184/us-digital-buyer-share-age-group/> (accessed 04/04/2023).

Statista (2022) Distribution of digital buyers in Brazil in 2022, by age group. Available at: <https://www.statista.com/statistics/519746/age-distribution-of-online-shoppers-in-brazil/> (accessed 04/04/2023).

UNCTAD (2021a) COVID-19 and E-commerce: a Global Review. New York: United Nations. Available at: <https://unctad.org/system/files/official-document/dtlstict2020d13_en_0.pdf> (accessed 04/04/2023).

UNCTAD (2021b) Estimates of Global E-commerce 2019 and Preliminary Assessment of COVID-19 Impac on Online Retail 2020. UNCTAD Technical Notes on ICT for Developmen Nº 118. New York: United Nations. Available at: <https://unctad.org/system/files/official-document/tn_unctad_ict4d18_en.pdf> (accessed 04/04/2023).

Zhou, Y. and X.C. Wang (2014) Explore the relationship between online shopping and shopping trips: an analysis with the 2009 NHTS data. Transportation Research Part A: Policy and Practice, v. 70, p. 1-9. DOI: 10.1016/j.tra.2014.09.014 DOI: https://doi.org/10.1016/j.tra.2014.09.014

Downloads

Publicado

24-08-2023

Como Citar

Tavares Muzzi de Sousa, L., Kopperschmidt de Oliveira, I., Kelli de Oliveira, L., dos Santos Junior, J. L., & Vieira Bertoncini, B. (2023). Relação espacial entre dados sociodemográficos e de acesso ao varejo e as entregas do comércio eletrônico: o caso de Belo Horizonte (Brasil). TRANSPORTES, 31(2), e2820. https://doi.org/10.58922/transportes.v31i2.2820

Edição

Seção

Artigos Vencedores do Prêmio ANPET Produção Científica