Estimativa do impacto das condições meteorológicas sobre a carga de trabalho dos controladores de tráfego aéreo na TMA-SP
DOI:
https://doi.org/10.14295/transportes.v25i4.1233Keywords:
Workload, Air traffic management, Adverse weather conditions.Abstract
This study aims to estimate the impact caused by certain weather conditions on the workload of the ATCO who operate in the TMA-SP. In order to do so, eight specific days were simulated in the TAAM simulator, seven of which contained different bad weather conditions for aviation. The results show an increase in the controllers' workload, which affects important sectors where the movement of flights is already considered heavy. Critical weather conditions and times are identified and can serve as the basis for strategic planning of safety and operational efficiency in the context of air traffic management. It is important that the one responsible for air traffic flow management actions consider them, as this can help minimize the impacts caused by delays on airlines’ direct and indirect costs as well as on air transport users. Academically, it is necessary to carry out research on the automation of operational actions with the purpose of reducing the controllers’ workload.
Downloads
References
ANAC (2014). Anuário do Transporte aéreo 2014. Brasília, ANAC. Disponível em: <http://www.anac.gov.br/assuntos/dados-e-estatisticas/mercado-de-transporte-aereo/anuario-do-transporte-aereo/dados-do-anuario-do-transporte-aereo>. Acesso em: 19/12/2017.
BARNHART, C.; D. FEARING; A. ODONI e V. VAZE (2012) Demand and capacity management in air transportation. Research Paper. EURO J Transp Logist, v. 1, questões 1-2, p.135–155. DOI 10.1007/s13676-012-0006-9. Disponível em: <https://link.springer.com/content/pdf/10.1007%2Fs13676-012-0006-9.pdf>. Acesso em: 19/12/2017.
BAUM, D. M. e C. MÜLLER (2008) Análise da relação a carga de trabalho do APP-SP com a complexidade da TMA-SP, através de ferramenta computacional. Sitraer 7, Ano 2008, Tr. 436, p. 469-481. Disponível em: <https://cabecadepapel.com/sites/viisitraer2008/pdf/436.pdf>. Acesso em: 19/12/2017.
CGNA (2014) Relatórios de Situação. Departamento de Controle do Espaço Aéreo. Rio de Janeiro: DECEA.
CPTEC (2016) Imagens de Satélites. Acervo de Imagens. Instituto Nacional de Pesquisas Espaciais. Cachoeira Paulista: INPE. Disponível em: <http://satelite.cptec.inpe.br/acervo/goes.formulario.logic>. Acesso em: 27/03/2016.
CONSIGLIO, M. C.; J. P. CHAMBERLAIN e S. R. WILSON (2011) Integration of Weather Avoidance and Traffic Separation. 30th Digital Avionics Systems Conference (DASC). IEEE/AIAA. DOI: 10.1109/DASC.2011.6096050. Disponível em: <https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110020261.pdf>. Acesso em: 19/12/2017.
DELAURA, R.; M. ROBINSON; M. PAWLAK; J. E. EVANS (2008) Modeling Convective Weather Avoidance in Enroute Airspace. 13th Conference on Aviation, Range, and Aerospace Meteorology (ARAM), New Orleans, Louisiana. Disponível em: <https://ams.confex.com/ams/pdfpapers/132903.pdf>. Acesso em: 19/12/2017.
DELAURA, R. e J. E. EVANS (2006) An exploratory study of modeling enroute pilot convective storm flight deviation behaviour, 12th Conference on Aviation, Range, and Aerospace Meteorology (ARAM), Atlanta, Georgia. Disponível em: <https://www.ll.mit.edu/mission/aviation/publications/publication-files/nasa-reports/DeLaura_2006_NASA-A6_WW-12670.pdf>. Acesso em: 19/12/2017.
DECEA (2014a) Capacidade do espaço aéreo. ICA 100-17. Rio de Janeiro: DECEA. Publicado no Boletim do Comando da Aeronáutica nº 160, de 16 de agosto de 2014. Disponivel em: <https://publicacoes.decea.gov.br/>. Acesso em: 19/12/2017.
DECEA (2014b) Regras do ar. ICA 100-12. Rio de Janeiro: DECEA. Publicado no Boletim do Comando da Aeronáutica nº 160, de 26 de agosto de 2014. Disponivel em: <https://publicacoes.decea.gov.br/>. Acesso em: 19/12/2017.
DECEA (2014c) Serviços de tráfego aéreo. ICA 100-37. Rio de Janeiro: DECEA. Publicado no Boletim do Comando da Aeronáutica nº 92, de 19 de maio de 2014. Disponivel em: <https://publicacoes.decea.gov.br/>. Acesso em: 19/12/2017.
DECEA (2012) Plano de Voo. ICA 100-11. Rio de Janeiro: DECEA. Publicado no Boletim do Comando da Aeronáutica nº 210, de 05 de novembro de 2012. Disponivel em: <https://publicacoes.decea.gov.br/>. Acesso em: 19/12/2017.
DECEA (2010) Serviço de gerenciamento de fluxo de tráfego aéreo. ICA 100-22. Rio de Janeiro: DECEA. Publicado no Boletim do Comando da Aeronáutica nº 108, de 11 de junho de 2010. Disponivel em: <https://publicacoes.decea.gov.br/>. Acesso em: 19/12/2017.
ERZBERGER, H. (2004) Transforming the NAS - The Next Generation Air Traffic Control System. Ames Research Center, Moffett Field, California. NASA/TP–2004-212828. Disponível em: <https://www.aviationsystemsdivision.arc.nasa.gov/publications/tactical/NASA-TP-2004-212828.pdf>. Acesso em: 19/12/2017.
EUROCONTROL (2016) Fast-time Simulation Tools. Disponível em: <http://www.eurocontrol.int/eec/public/standard_page/ WP_Fast_Time_Simulation_Tools.html>. Acesso em: 10/02/2016.
EUROCONTROL (2003a) Comparison of Different Workload and Capacity Measurement Methods Used in CEATS Simulations: Comparison of SAAM 3; FTS 3, SSRTS3 and CEATS2007 UAC Capacity. Research, Development and Simulation Centre. Budapest – Hungary. EUROCONTROL. Disponível em: <http://www1.atmb.net.cn/CD_web/UploadFile/2013092718150954.pdf>. Acesso em: 19/12/2017.
EUROCONTROL (2003b) Pessimistic Sector Capacity Estimation. EEC Note Nº 21/03. Project COCA. Network Capacity and Demand Management – NCD. Centre de Bois des Bodes. France. Disponível em: <https://www.eurocontrol.int/eec/public/standard_page/DOC_Report_2003_026.html>. Acesso em: 19/12/2017.
EUROCONTROL (2000) TAAM Operational Evaluation. EEC Report N° 351. Project SIM-S-E8. Aug. 2000.
EVANS, J. E. e E. R. DUCOT (2000) Corridor integrated weather system. MIT Lincoln Laboratory Journal, v. 16, n. 1, p. 59–80. Disponível em: <https://www.ll.mit.edu/publications/journal/pdf/vol16_no1/16_1_4EvansDucot.pdf>. Acesso em: 19/12/2017.
EUROCONTROL (1994) The Integrated Terminal Weather System. MIT Lincoln Laboratory Journal, v. 7, n. 2. Disponível em: <https://www.ll.mit.edu/mission/aviation/faawxsystems/itws.html>. Acesso em: 19/12/2017.
EVANS, J. E.; M. ROBINSON e S. ALLAN (2005). Quantifying convective delay reduction benefits for weather/ATM systems. 6th EUROCONTROL/FAA ATM R&D Seminar, v. 14, n, 1, p. 69-93. Baltimore. Disponpivel em: <https://arc.aiaa.org/doi/abs/10.2514/atcq.14.1.69?journalCode=atcq>. Acesso em: 19/12/2017.
FAA (2007) Report of the Weather-ATM Integration Working Group. Research, Engineering and Development Advisory Committee. Oct, 2007. Disponível em: <https://www.faa.gov/about/office_org/headquarters_offices/ang/offices/tc/about/campus/faa_host/RDM/media/pdf/Report-WeatherWorkingGroup.pdf>. Acesso em: 03/02/2016.
KLEIN, A.; S. KAVOUSSI, e R. S. LEE (2009) Weather forecast accuracy: study of impact on airport capacity and estimation of avoidable costs. 8th USA/Europe Air Traffic Management Research and Development Seminar (ATM2009), Napa, California. Disponível em: <https://pdfs.semanticscholar.org/225b/702c488fcb697b16f4bbcbf78c23787c2680.pdf>. Acesso em: 19/12/2017.
KLIMENKO, V. e J. KROZEL (2011) Clear-Air Turbulence Impact Modeling Based on Flight Route Analysis, AIAA Guidance, Navigation, and Control Conference, Guidance, Navigation, and Control. Chicago, IL. DOI: 10.2514/6.2011-6513. Disponível em: <https://arc.aiaa.org/doi/abs/10.2514/6.2011-6513>. Acesso em: 19/12/2017.
KROZEL, J. (2011) Summary of Weather-ATM Integration Technology. Second Aviation, Range and Aerospace Meteorology Special Symposium on Weather-Air Traffic Management Integration, American Meteorological Society, Seattle, WA. Disponível em: <https://ams.confex.com/ams/91Annual/webprogram/Paper187588.html>. Acesso em: 19/12/2017.
KROZEL, J.; M. GANJI; S. YANG; J. S. B. MITCHELL e V. POLISHCHUK (2011) Metrics for Evaluating The Impact Of Weather On Jet Routes. 15th Conference on Aviation, Range, and Aerospace Meteorology. 9 p. Disponível em: <http://ams.confex.com/ams/14Meso15ARAM/webprogram/Manuscript/Paper191127/AMS11%20ARAM%20Route%20Metrics%20FINAL%20081611.pdf>. Acesso em: 19/12/2017.
KROZEL, J.; J. S. B. MITCHELL; V. POLISHCHUK e J. PRETE (2007) Maximum Flow Rates for Capacity Estimation in Level Flight with Convective Weather Constraints. Air Traffic Control Quarterly, v. 15, n. 3, p. 209-238. DOI: 10.2514/atcq.15.3.209. Disponível em: <https://arc.aiaa.org/doi/abs/10.2514/atcq.15.3.209>. Acesso em: 19/12/2017.
KULN, K. (2008) Analysis of thunderstorm effects on aggregated aircraft trajectories. Journal of aerospace computing, information, and communication. Aerospace Engineer, v. 5, n. 4, p.108-119, NASA Ames Research Center, Moffett, CA 94035. April, 2008. Disponível em: <https://arc.aiaa.org/doi/abs/10.2514/1.34830>. Acesso em: 19/12/2017.
MAJUMDAR, A. e J. W. POLAK (2014) Estimating Capacity of Europe's Airspace Using a Simulation Model of Air Traffic Controller Workload. Transportation Research Record Journal of the Transportation Research Board. Vol.1744. Imperial College London, Londinium, England, United Kingdom. DOI: 10.3141/1744-05. 2014. Disponível em: <http://trrjournalonline.trb.org/doi/abs/10.3141/1744-05>. Acesso em: 19/12/2017.
MAJUMDAR, A.; OCHIENG, W. Y.; MCAULEY, G.; LENZI, J. M.; LEPADATU, C. (2005) The Factors Affecting Airspace Capacity in Europe: A Framework Methodology Based on Cross Sectional Time-Series Analysis Using Simulated Controller Workload Data. 6th Seminar, v. 57, n. 3, paper 119, p. 385-405, Baltimore, MD, USA. DOI: 10.1017/S0373463304002863. Disponivel em: <http://www.atmseminar.org/seminarContent/seminar6/papers/p_119_U.pdf>. Acesso em: 19/12/2017.
MIT (2016a) FAA Weather Systems. Lincoln Laboratory. Disponível em: <https://ll.mit.edu/mission/aviation/faawxsystems/faawxsystems.html>. Acesso em: 21/09/2017.
MIT (2016b) Weather – Air Traffic Management Integration. Lincoln Laboratory. Disponível em: <https://ll.mit.edu/mission/aviation/wxatmintegration/wxatminteg.html>. Acesso em: 21/09/2017.
MICHALEK, D. e H. BALAKRISHNAN (2010) Dynamic Reconfiguration of Terminal Airspace During Convective Weather. 49th IEEE Conference on Decision and Control (CDC). Atlanta, GA, USA. p. 4875-4881. DOI: 10.1109/CDC.2010.5718007. Disponível em: <http://ieeexplore.ieee.org/document/5718007/>. Acesso em: 19/12/2017.
MICHALEK, D. e H. BALAKRISHNAN (2009a) Building a Stochastic Terminal Airspace Capacity Forecast from Convective Weather Forecasts. In Proceedings of the Aviation, Range and Aerospace Meteorology Special Symposium on Weather-Air Traffic Management Integration. Disponível em: <http://web.mit.edu/hamsa/www/pubs/MichalekBalakrishnanAMS09.pdf>. Acesso em: 19/12/2017.
MICHALEK, D. e H. BALAKRISHNAN (2009b) Identification of Robust Routes using Convective Weather Forecasts. Eighth USA/Europe Air Traffic Management Research and Development Seminar, v. 46, n. 1, p. 56-73, Napa, California. Paper 124. DOI:10.1287/trsc.1110.0372. Disponível em: <http://www.mit.edu/~hamsa/pubs/MichalekBalakrishnanATM09.pdf>. Acesso em: 19/12/2017.
MOGFORT, R. H.; J. A. GUTTMAN; S. L. MORROW e P. KOPARDEKAR (1995) The Complexity Construct in Air Traffic Control: A Review and Synthesis of the Literature. U.S. Department of Transportation. Federal Aviation Administration. Office of Aviation Research. Washington, D.C. 20591. Disponível em: <http://www.tc.faa.gov/acb300/techreports/tn9522.pdf>. Acesso em: 19/12/2017.
PLANO DE VOO NET (2016) Carta ENRC Low. Disponível em: <http://www.planodevoo.net/index3.html>. Acesso em: 11/02/2016.
RHODA, D. A.; E. A. KOCAB e M. L. PAWLAK (2002) Aircraft encounters with convective weather in en route vs. terminal airspace above Memphis, Tennessee, 10th Conference on Aviation, Range and Aerospace Meteorology, American Meteorological Society, Portland, OR. Disponível em: <https://www.ll.mit.edu/mission/aviation/publications/publication-files/ms-papers/Rhoda_2002_ARAM_MS-15308_WW-16138.pdf>. Acesso em: 19/12/2017.
ROCHA, A. C. (2017) Impacto Provocado pelas Condições Meteorológicas Sobre a Carga de Trabalho dos Controladores de Tráfego Aéreo e Sobre as Emissões de CO2 nas Áreas Terminais de São Paulo e Rio de Janeiro. versão: 2017-10-11. 244 p. IBI: <8JMKD3MGP3W34P/3NNAGG5>. Tese (Doutorado em Meteorologia) - Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos. Disponível em: <http://urlib.net/8JMKD3MGP3W34P/3NNAGG5>. Acesso em: 17/10/2017.
SRPV-SP (2014) Modelo operacional do controle da aproximação de São Paulo (APP-SP). São Paulo: SRPV-SP. Portaria SRPV nº 102/OTNO, de 24 de abril de 2014.
SONG, L.; D. GREENBAUM e C. WANKE (2009) The Impact of Severe Weather on Sector Capacity. 8th USA/Europe Air Traffic Management Research and Development Seminar, Napa, CA. Disponível em: <http://www.atmseminarus.org/seminarContent/seminar8/papers/p_075_W.pdf>. Acesso em: 19/12/2017.
STEINER, M.; D. MEGENHARDT; R. BATEMAN e J. KROZEL (2010) Translation of Ensemble Weather Forecasts into Probabilistic Air Traffic Capacity Impact. Air Traffic Control Quarterly, v. 18, n. 3, p. 229-254. DOI: 10.2514/atcq.18.3.229. Disponível em: <http://ieeexplore.ieee.org/document/5347538/>. Acesso em: 19/12/2017.
TEIXEIRA, R. J. G. (2007) Análise do impacto do uso da re-setorização dinâmica na carga de trabalho do controlador de tráfego aéreo por meio de simulações computacionais. Dissertação (Mestrado). Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia da Computação e Sistemas Digitais. São Paulo. Disponível em: <http://www.teses.usp.br/teses/disponiveis/3/3141/tde-09012008-162108/en.php>. Acesso em: 19/12/2017.
TOBARUELA, G.; A. MAJUMDAR e W. Y. OCHIENG (2012) Identifying Airspace Capacity Factors in the Air Traffic Management System. ATACCS’2012. DOCTORAL CONSORTIUM. London, UK. Disponível em: <http://www.hala-sesar.net/sites/default/files/documents/p219-tobaruela.pdf>. Acesso em: 19/12/2017.
WEBER, M. E.; J. E. EVANS; W. R. MOSER e O. J. NEWELL (2007) Air Traffic Management Decision Support During Convective Weather, MIT Lincoln Laboratory Journal, v. 16, n. 2. Disponível em: <https://www.ll.mit.edu/publications/journal/pdf/vol16_no2/16_2_03Weber.pdf>. Acesso em: 19/12/2017.
WEBER, M. E.; J. E. EVANS; M. WOLFSON; R. DELAURA; B. MOSER; B. MARTIN; J. WELCH; J. ANDREWS e D. BERTSIMAS (2005) Improving Air Traffic Management During Thunderstorms, 24th AIAA/IEEE Digital Avionics Systems Conference (DASC), Vol 1. Washington, DC. DOI: 10.1109/DASC.2005.1563353. Disponível em: https://www.researchgate.net/publication/4206227_Improving_air_traffic_management_during_thunderstorms. Acesso em: 19/12/2017.
Downloads
Published
How to Cite
Issue
Section
License
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.