Mathematical model for supply chain design with time postponement

Authors

DOI:

https://doi.org/10.14295/transportes.v26i4.1324

Keywords:

Suplly chain design, Time postponement, Mathematical Model.

Abstract

Designing a supply chain is a major strategic issue due to its impact on efficiency and responsiveness. The design becomes more complex when the goal is to reduce distribution costs and use the time postponement in the supply chain. The mathematical models currently studied in the literature consider various actors involved in the network. However, in real problems there are different combinations of actors, creating own transportation flows and increasing the complexity of a supply chain. This paper proposes a model for designing supply chains with time postponement from a mixed integer non-linear programming formulation to minimize the total costs, considering the transportation, facilities opening and operational costs. The model allows the possibility of a hybrid facility, that is, two kinds of facilities opened in the same place, an important opportunity to saving costs. Some sets of instances were simulated to find the optimal solution of that model and analyze the supply chain behavior in different instances sizes. These scenarios were solved by a commercial solver and its performance was assessed. The model presents feasibility of use for small and medium-sized instances with enough computing time to aid in management decision making.

Downloads

Download data is not yet available.

References

Alderson, W. (1950) Marketing efficiency and the principle of postponement. Cost and profit outlook. v. 3, pp. 15-18.

Aviv, Y.; and A. Federgruen (2001) Design for postponement: A comprehensive characterization of its benefits under unknown demand distributions. Operations Research, v. 49(4), pp. 578-598.

Cardoso, P. A. (2002) The Principle of Postponement: a study at the supply chain of printing inks. Rio de Janeiro: PUC – Pontifícia Universidade Católica. Doctoral dissertation, 161 p.

Çelebi, D. (2015) Inventory control in a centralized distribution network using genetic algorithms: A case study. Computers & Industrial Engineering, v. 87, pp. 532-539.

Das, C., and R. Tyagi (1997) Role of inventory and transportation costs in determining the optimal degree of centralization. Transportation Research Part E: Logistics and Transportation Review, v. 33(3), p. 171-179.

Eynan, A. (1999) The multi-location inventory centralization problem with first-come, first-served allocation. European Journal of Operational Research, Vol. 114(1), pp. 38-49.

Fernandes, B. C.; F. H. Galamba, F. H.; Tosta; L. I. and R. S. Lima (2011) Impactos da utilização de centros de distribuição na logística de distribuição de produtos acabados. Revista de literatura do transporte, v. 5, pp. 163-181.

Ferreira, K. A. (2009) Uma estrutura conceitual para aplicação do postponement: estudo multicaso em empresas da indústria de alimentos. São Carlos: UFSCar – Universidade Federal de São Carlos. Doctoral dissertation, 203 p.

Ferreira, K. A., and R. L. C. Alcantara (2011) Postponement: abordagens para sua aplicação em empresas da indústria de alimentos. In. XXXI Encontro Nacional de Engenharia de Produção, Belo Horizonte, pp 1-14.

García‐Dastugue, S. J. and D. M. Lambert (2007) Interorganizational time‐based postponement in the supply chain. Journal of Business Logistics, v. 28(1), pp. 57-81

Gaur, S.; and A. R. Ravindran (2006) A bi-criteria model for the inventory aggregation problem under risk pooling. Computers & industrial engineering, v. 51(3), pp. 482-501.

IBM (2012) IBM ILOG CPLEX v12.5: User’s manual for CPLEX.

Lau, H. S., and A. H. L. Lau (1996) The newsstand problem: A capacitated multiple-product single-period inventory problem. European Journal of Operational Research, v. 94(1), pp. 29-42.

Kutanoglu, E.; and D. Lohiya (2008) Integrated inventory and transportation mode selection: A service parts logistics system. Transportation Research Part E: Logistics and Transportation Review, v. 44(5), p. 665-683.

Nozick, L. K., and M. A.Turnquist (2001) Inventory, transportation, service quality and the location of distribution centers. European Journal of Operational Research, v. 129(2), pp. 362-371.

Pishvaee, M. R., Farahani, R. Z., and Dullaert, W (2010). A memetic algorithm for bi-objective integrated foward/reverse logistic network design. Computers & Operations Research, v. 37, pp. 1100 – 1112.

Razmi, J., A. Zahedi-Anaraki, and M. Zakerinia, M. (2013) A bi-objective stochastic optimization model for reliable warehouse network redesign. Mathematical and Computer Modelling, v. 58(11), pp. 1804-1813.

Rodrigues, E. F., and N. D. Pizzolato.(2013) The economy of distribution centers: The case of large retail networks in Brazil. African Journal of Business Management, v. 7, pp. 1541-1552.

Santos, A. (2006) Centros de distribuição como vantagem competitiva. Revista de ciências gerenciais, Vol. 10, pp. 34-40.

Servare Junior, M. W. J., G. M. Ribeiro, and G. L. D. Chaves (2012). Um modelo matemático para redes logísticas com fluxos diretos e reversos e novos integrantes. Proceedings of XXXII Encontro Nacional de Engenharia de Produção, ABEPRO, Bento Gonçalves, pp. 1-14.

Servare Junior, M. W. J., and P. A. Cardoso (2016) Time postponement in supply chain: a mathematical programming review. Proceedings of 23rd European Management Operations Association Conferece, EUROMA, Trondheim, pp. 1-16.

Downloads

Published

2018-12-28

How to Cite

Servare Junior, M. W. J., Cardoso, P. A., Cruz, M. M. da C., & Paiva, M. H. M. (2018). Mathematical model for supply chain design with time postponement. TRANSPORTES, 26(4), 1–15. https://doi.org/10.14295/transportes.v26i4.1324

Issue

Section

Artigos