Modelo de identificação do impacto futuro de chuvas extremas nos atrasos/cancelamentos de voos

Authors

  • Thiago Adriano dos Santos Instituto Tecnológico de Aeronáutica (ITA).
  • Iria Vendrame Instituto Tecnológico de Aeronáutica (ITA).
  • Cláudio Jorge Pinto Alves Instituto Tecnológico de Aeronáutica (ITA).
  • Mauro Caetano Universidade Federal de Goiás (UFG) / Instituto Tecnológico de Aeronáutica (ITA). http://orcid.org/0000-0002-5978-1054
  • João Paulo Souza Silva Faculdade de Ciências e Tecnologia (FCT) / Engenharia de Transportes / Universidade Federal de Goiás (UFG).

DOI:

https://doi.org/10.14295/transportes.v26i2.1379

Keywords:

Airport, Spearman Correlation, Climate Changes.

Abstract

Problems associated with flight delays and cancellations significantly affect the development of the aviation industry. Unfavourable weather conditions are among some of the main reasons for these problems, and the mapping and climate predictions are essential for making decisions regarding climate interference in air operations. In this sense, the present study takes as reference the case of São Paulo/Guarulhos International Airport (GRU) and correlates events of flight delays and cancellations to accumulated rainfall indexes. The pluviometric data for the meteorological station of GRU considered refer to the years 2011 to 2015, while the forecasts are made for the period between 2016 and 2020 in order to test the proposed model. Spearman correlation is used to analyse the relationship between rainfall index and flight delays/cancellations to create a range of accumulated daily rainfall values that generate these delays/cancellations. The Bias correction, by the power transformation method, was also adopted for future corrected data. The results show that, according to the data used, there will be an increase of approximately 15% in the amount of flight delays/cancellations over the five years considered in the study. In addition, it is considered that there will be an increase in the number of days of occurrence of these events.

Downloads

Download data is not yet available.

References

Alves, T. L. B.; J. V. V. Azevedo; C. A. C Santos e P. V. Azevedo (2015) Influence of climatic variations in the occurrence of diseas-es of the upper airways in the municipality of Monteiro-PB. Ciência e Natura. v. 37, n.4, p. 433-450. DOI: 105902/2179460X16702.

Andriotti, J. L. S. (2003) Fundamentos de Estatística e Geoestatística. Ed. UNISINOS, São Leopoldo.

Bendinelli, W. E.; H. F. A. J. Bettini e A. V. M. Oliveira (2016) Airline delays, congestion internalization and non-price spillover effects of low cost carrier entry. Transportation Research. Part A, Policy and Practice, v. 85, p. 39-52, DOI: 10.1016/j.tra.2016.01.001

Benedetto, A. (2002) A decision support system for the safety of airport runways: the case of heavy. Transportation Research Part A: Policy and Practice, v. 36, n. 8, p. 665-68. DOI: 10.1016/S0965-8564(01)00029-5.

Borges, B. L. M. (2003) Simplificando a estatística. Campina Grande: EDUEPB, 2008p.

GRU Airport, Aeroporto Internacional de São Paulo/Guarulhos. Disponível em: http://www.gru.com.br (Acesso em: 19/05/2017)

Halkos, G. E. e K. D. Tsilika (2014) Analyzing and visualizing the synergistic impact mechanisms of climate change related costs. Applied Mathematics and Computation. v. 246, p. 586-596. DOI: 10.1016/j.amc.2014.08.044.

Koetse, M. J. e P. Rietveld (2009) The impact of climate change and weather on transport: An overview of empirical findings. Transportation Research Part D: Transport and Environment. v. 14, n. 3, p. 205-221. DOI: 10.1016/j.trd.2008.12.004.

Janić, M. (2015) Modelling the resilience, friability and costs of an air transport network affected by a large-scale disruptive event. Transportation Research Part A: Policy and Practice. v. 71, p. 1-16. 2015. DOI: 10.1016/j.tra.2014.10.023.

Metchko, P. A e M. A. Monteiro (2014) Windshear: A condição meteorológica de risco para a aviação. IX EPCT - Encontro de Produção Científica e Tecnológica - UNESPAR. Campo Mourão.

Santos, T. A. e G Fisch. (2016) Temperatura e precipitação: futuros cenários do município de Taubaté, SP, Brasil. Revista Am-biAgua. Taubaté. v. 11, p. 1068-1087. DOI:10.4136/ambi-agua.1896.

Santos, G. e M. Robin (2010) Determinants of delays at European airports. Transportation Research Part B: Methodological. v. 44, n. 3, p. 392-403. DOI: 10.1016/j.trb.2009.10.007.

SIGRH - Sistema Integrado de Recursos Hídricos do estado de São Paulo (s/d). Disponível em: http://www.sigrh.sp.gov.br (Aces-so em: 05/03/17).

Silva, J. P. S. (2008) Aderência pneu-pavimento em revestimentos asfálticos aeroportuários. Dissertação de Mestrado em Geotec-nia. Programa de Pós-graduação em Geotecnia. Universidade de Brasília. 134p.

Teutschbein, C. e J. Seibert (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. Journal of Hydrology. v. 12, p. 456–457. DOI: 10.1016/j.jhydrol.2012.05.052

Xiong, J. e M. Hansen (2013) Modelling airline flight cancellation decisions. Transportation Research Part E: Logistics and Transportation Review. v. 56, p. 64-80. DOI: 10.1016/j.tre.2013.05.003.

Walters, K. M. e M. B. Sebens (2016) Using climate change scenarios to evaluate future effectiveness of potential wetlands in mitigating high flows in a Midwestern U.S.watershed. Ecological Engineering. v. 89, p. 80-102. DOI: 10.1016/j.ecoleng.2016.01.014.

Published

2018-08-31

How to Cite

Santos, T. A. dos, Vendrame, I., Alves, C. J. P., Caetano, M., & Silva, J. P. S. (2018). Modelo de identificação do impacto futuro de chuvas extremas nos atrasos/cancelamentos de voos. TRANSPORTES, 26(2), 44–53. https://doi.org/10.14295/transportes.v26i2.1379

Issue

Section

Artigos