Metodologia de baixo custo para mapeamento geotécnico aplicado à pavimentação
DOI:
https://doi.org/10.14295/transportes.v26i2.1491Keywords:
Geotechnics, Neural Modeling, Geoprocessing.Abstract
This paper presents a low-cost methodology for forecasting and mapping of CBR values (California Bearing Ratio) of soils in the energies normal compression (CBR-N) and intermediate (CBR-I), which contribute to the decision-making process as to their use for paving purposes. GIS, Artificial Neural Networks (ANN) and modeling techniques as well as biophysical and spatial variables were used as explanatory of the modeled phenomenon. The researched characteristics (pedology, geology, geomorphology, vegetation, hypsometry and position) correlated with CBR values of soils in both energy compaction. CBR data were extracted from pre-existing projects and studies in the study area, in this case, the metropolitan area of Fortaleza (MAF). Thus, they were calibrated, validated and tested in many different ANN to find the two models best fit, for the generation of CBR-N estimates and CBR-I, of the soil MAF from the studied biophysical variables. The geotechnical characteristics estimated by these models enabled the development of two Neural Geotechnical Maps stratified to predict the values, CBR-N and CBR-I. The results show that ANN technique is promising to predict the mechanical properties of soils and can assist in making decisions regarding the use of these in road projects.Downloads
References
Almeida, Márcio. S. S.; M. E. S. Marques; T. C. Miranda (2008) Lowland Reclamation in Urban Areas. In: Geotechnical Infra-structure for Mega Cities and New Capitals, XIV COBRAMSEG , Búzios.
Anderson, D.A. e R. Dongre (1995) The SHRP Direct Tension Specification Test – Its Development and Use. Physical Properties of Asphalt Cement Binders. In: J.C. Hardin, Ed. ASTM Special Technical Publication 1241. American Society for Testing and Materials, Philadelphia, PA, p. 51-66.
Beale, M. H.; M. T. Hagan e H. B. Demuth (2010). Neural Network Toolbox™ 7 - User’s Guide.
Bockheim, J. G.; A. N. Gennadiyev; R. D. Hammer e J. P. Tandarich (2005). The Historical development of key concepts in Pedol-ogy. Geoderma, v. 124, n. 1-2, p. 23–36. DOI:10.1016/j.geoderma.2004.03.004
Bui, D.; H. Tien; C. Tien; I. Revhaug; B. Pradhan e D. B. Nguyen (2014) Landslide susceptibility mapping along the national road 32 of Vietnam using GIS-based j48 decision tree classifier and its ensembles. Cartography from pole to pole, pag. 303-317. Editora Springer Berlin Heidelberg. DOI:10.1007/978-3-642-32618-9_22
Câmara, G.; C. B. Medeiros; M. A. Casa Nova; A. Hemerly e G. Magalhães (2004) Anatomia de sistemas de informação geográfica. Escola de Computação, SBC.
Câmara, A. S. (1996). Spatial Simulation Modelling. Spatial Analytical Perspectives on GIS. M. Fisher. London, Taylor & Francis: 213-218.
Caten, A. ten; R. S. D. Dalmolin; F. de A. Pedron e M. de L. Mendonça‑Santos (2011b) Regressões logísticas múltiplas: fatores que influenciam sua aplicação na predição de classes de solos. Revista Brasileira de Ciência do Solo, v.35, p.53‑62. DOI:10.1590/S0100-06832011000100005
Debella-Gilo, M. e B. Etzelmüller (2009) Spatial prediction of soil classes using digital terrain analysis and multinomial logistic regression modeling integrated in GIS: Examples from Vestfold County, Norway, Catena, v. 77, p. 8-18, 2009. DOI:10.1016/j.catena.2008.12.001
DNIT (2006) Manual De Pavimentação, 2006.
Franco, F.A.C.P. (2007) Método de Dimensionamento Mecanístico-Empírico de Pavimentos Asfálticos – SISPAV. 294p. Tese (Doutorado em Engenharia Civil) - Universidade Federal do Rio de Janeiro, Rio de Janeiro.
Fritzen, M. A. (2016) Desenvolvimento e Validação de Função de Transferência para Previsão do Dano por Fadiga em Pavimentos Asfálticos – Rio de Janeiro: UFRJ/COPPE.
Guilherme, A. T. P.; A. J. A. Ribeiro; W. S. Cabral; C. A. U. Silva; S. H. A. Barroso e I. W. Castro (2016) Um Método para Construção de um Banco de Dados com fins de Modelagem Geotécnica para Pavimentação dos Solos da Microrregião de Mossoró-RN. In: XXX Congresso Nacional de Pesquisa em Transporte da ANPET. Rio de Janeiro. Anais, p. 85-96.
Gunaydin O.; A. Gokoglu e M. Fener (2010). Prediction of artificial soil’s unconfined compression strength test using statisti-cal analyses and artificial neural networks. Advances in Engineering Software, v. 41, p. 1115-1123, 2010. DOI:10.1016/j.advengsoft.2010.06.008
Hartemink, A. E. e A. B. McBratney (2008). A soil science renaissance. Geoderma, v. 148, p. 123-129. DOI:10.1016/j.geoderma.2008.10.006
Haykin (2001) Neural Networks, A Comprehensive Foundation. Second Edition, Pearson Education, McMaster University, Ham-ilton, Ontario, Canada.
Johari A.; A. A. Javadi e G. Habibagahi (2011) Modelling the mechanical behaviour of unsaturated soils using a genetic algo-rithm-based neural network. Computers and Geotechnics, v 38, p. 2-13, 2011. DOI: 10.1016/j.compgeo.2010.08.011
Juang, C. H.; P. C. Lu e C. J. Chen (2002), Predicting Geotechnical Parameters of Sands from CPT Measurements Using Neural Networks. Computer-Aided Civil and Infrastructure Engineering, v. 17, p. 31–42. DOI: 10.1111/1467-8667.00250
Kempen B.; D. J. Brus; G. B. M. Heuvelink e J. J. Stoorvogel (2009) Updating the 1:50,000 Dutch soil map using legacy soil data: A multinomial logistic regression approach. Geoderma, Amsterdam, v 151, p. 311-326, 2009. DOI: 10.1016/j.geoderma.2009.04.023
Lagacherie, P. e A. B. McBratney (2007) Spatial soil information systems and spatial soil inference systems: Perspectives for digi-tal soil mapping. Digital soil mapping: An introductory perspective. Amsterdam, Elsevier, p.3-22.
McBratney, A. B.; S. M. L. Mendonca e B. Minasny (2003) On digital soil mapping. Geoderma, Amsterdam, v. 117, n. 1-2, p. 3-52, 2003. DOI: 10.1016/S0016-7061(03)00223-4
McCulloch, W. S. e W. H. Pitts (1943) ‘A Logical Calculus of the Ideas Immanent in Nervous Activity’, Bulletin of Mathematical Biophysics 7, 115–133. Reprinted in McCulloch 1964, pp. 16–39.
Oh, T. C. e B. Pradhan (2011) Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Computers & Geosciences, v. 37, n.9, pag. 1264 - 1276, 2011. DOI: 10.1016/j.cageo.2010.10.012
Ribeiro, A. J. A.; C. A. U. da Silva e S. H. A Barroso (2015). Neural Estimation of Localization and Classification of Soils for Use in Low-Traffic-Volume Roads. Transportation Research Record, v. 2473, p. 98-106, 2015. DOI: 10.3141/2473-12
Ribeiro, A. J. A.; C. A. U. da Silva e S. H. A. Barroso (2016) Metodologia Para Criação De Um Banco De Dados Georeferenciado a Partir de Dados Geotécnicos Obtidos Em -As Built- e Projetos Rodoviários. REEC - Revista Eletrônica de Engenharia Civil, v. 12, p. 1-13, 2016. DOI: 10.5216/reec.v12i2.39413
Ribeiro, A. J. A.; M.E. R. Rosa e G. A. Reis (2016) Comparação entre Diferentes Bases Altimétricas para Delimitação de Bacias e Extração de Drenagens. Revista Eletrônica de Gestão e Tecnologias Ambientais, v. 4, p. 193, 2016. DOI: 10.9771/gesta.v4i2.14992
Rosenblatt, F. (1958) The perceptron: A probabilistic model for information storage and organization in the brain. Psycholog-ical Review. v. 6, p. 386–408.
Scull, P.; J. Franklin; O. A. Chadwick e D. McArthur (2003), Predictive soil mapping a review. Progress in Physical Geography, v. 27, p. 171-197, 2003.
Souza, M. L. (1979) Método de projeto de pavimentos flexíveis. 2. ed. Rio de Janeiro: DNER, 1979.
Taskiran, T. (2010) Prediction of California bearing ratio (CBR) of fine grained soils by AI methods. Advances in Engineering Software n. 41, p. 886–892. DOI: 10.1016/j.advengsoft.2010.01.003
Yildirim, B. e O. Gunaydin (2011) Estimation of California bearing ratio by using soft computing systems. Expert Systems with Applications v. 38, p. 6381–6391. DOI: 10.1016/j.eswa.2010.12.054
Zeghal, M. e W. Khogali (2005) Predicting the resilient modulus of unbound granular materials by neural networks. National Research Council Canada (NRCC-47704). BCRA 2005, Trondheim, Norway, June 27-29, 2005, pp. 1-9.
Downloads
Published
How to Cite
Issue
Section
License
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.