Intermittent demand forecasting for aircraft inventories: a study of Brazilian’s Boeing 737NG aircraft´s spare parts management
DOI:
https://doi.org/10.14295/transportes.v27i2.1600Keywords:
Intermittent demand, Boeing 737NG, Spare parts, Aeronautical Maintenance.Abstract
This paper aims to compare and evaluate five different methods for predicting intermittent demand using spare parts recorded series of the 737 Next Generation aircraft, manufactured by Boeing, of the largest Brazilian air fleet managed by VRG Airline Company S/A. The Winter, Croston, Single Exponential Smoothing, Weight Moving Average and Poisson Distribution Methods were tested on a history data of 53 spare parts, and each one has a demand history of thirty-six months (January 2013 to December 2015). The results showed that the Weight Moving Average, Poisson Distribution and Croston methods presented the best adjustments. Also, it was observed that most of the demands for spare parts presented a smooth pattern unlike the result obtained by the study of Ghobbar and Friend (2003) that presented a lumpy pattern. On the other hand, it showed that the Winter Method presented the worst adjustment in both studies. It was possible, therefore, to conclude that Weight Moving Average and Poisson Distribution methods are the most suitable to evaluate the intermittent demand for the VRG Airline Company S/A case.
Downloads
References
Ahmad Beygi, S.; A. Cohn; Y. Guan e P. Belobaba (2008) Analysis of the potential for delay propagation in passenger airline networks. J. of Air Transp. Manag, v. 14, n. 5, p. 221-236. DOI: 10.1016/j.jairtraman.2008.04.010
ANAC, 2017 http://www.anac.gov.br/assuntos/dados-e-estatisticas/aeronaves. (accessed 2.13.2017).
Botter, R. e L. Fortuin (2000) Stocking strategy for service parts: a case study. International Journal of Operations & Production Management, v. 20, n. 6, p. 656-674. DOI: 10.1108/01443570010321612
Buffa, E. S. (1972) Production-inventory Systems: Planning and Control. Richard D. Erwin, Inc.
Burden, D. (1969) Production inventory systems: Planning and control. J Oper Res Soc., v. 20, n. 2, p 282–283. DOI: 10.1057/jors.1969.65
Croston, J. D. (1972) Forecasting and stock control for intermittent demands. Operational Research Quarterly, v. 23, p. 289-303. DOI: 10.2307/3007885
Dunsmuir, W. T. M. e R. D. Snyder (1989) Control of inventories with intermittent demand. European Journal of Operational Research, v. 40, p. 16-21. DOI: 10.1016/0377-2217(89)90267-1
EAVES, A. (2002) Forecasting for the ordering and stock-holding of consumable spare parts (PhD thesis), Lancaster University, Department of Management Science.
Foote, B. (1993) On the implementation of a control-based forecasting system for aircraft spare parts procurement, IIE Transactions, v. 27, n. 2, p. 210–216. DOI: 10.1080/07408179508936733
Gardner, E. S. (2006) Exponential smoothing: the state of the art—Part II. International Journal of Forecasting, v. 22, n. 4, p. 637-666. DOI: 10.1016/j.ijforecast.2006.03.005
Ghobbar, A. A. e C. H. Friend (2002) Sources of intermittent demand for aircraft spare parts within airline operations. Journal of Air Transport Management, v. 8, n. 4, p. 221–231. DOI: 10.1016/S0969-6997(01)00054-0
Ghobbar, A. A. e C. H. Friend (2003) Evaluation of forecasting methods for intermittent parts demand in the field of aviation: a predictive model. Computers and Operations Research, v. 30, n. 14, p. 2097-2014. DOI: 10.1016/S0305-0548(02)00125-9
Gross, D. (1981) SASPRO II – a spare and server provisioning model. Computers and Operations Research, v. 8, n. 3, p. 197–207. DOI: 10.1016/0305-0548(81)90008-3
Gu, J.; G. Zhang e K. W. Li (2015) Efficient aircraft spare parts inventory management under demand uncertainty. Journal of Air Transport Management, v. 42, p. 101-109. DOI: 10.1016/j.jairtraman.2014.09.006
Hemeimat, R.; L. Al-Qatawneh; M. Arafeh e S. Masoud (2016) Forecasting Spare Parts Demand Using Statistical Analysis. American Journal of Operations Research, v. 6, n. 2, p. 113-120. DOI: 10.4236/ajor.2016.62014
Johnston, F. R. e J. E. Boylan (1996) Forecasting for items with intermittent demand. Journal of the Operational Research Socie-ty, v. 47, n. 1, p. 113–121. DOI: 10.2307/2584256
Kennedy, W. J.; J. W. Patterson e L. D. Fredendall (2002) An Overview of Recent Literature on Spare Parts Inventories. Interna-tional Journal of Production Economics, v. 76, n. 2, p. 201-215. DOI: 10.1016/S0925-5273(01)00174-8
Koehler, A. B.; R. D. Snyder e J. K. Ord (2001) Forecasting models and prediction intervals for the multiplicative Holt-Winters method. International Journal of Forecasting, v. 17, n. 2, p. 269–286. DOI: 10.1016/S0169-2070(01)00081-4
Levén E. e A. Segerstedt (2004) Inventory control with a modified Croston procedure and Erlang distribution. International Journal of Production Economics, v. 90, n. 3, p. 361- 367. DOI: 10.1016/S0925-5273(03)00053-7
Lewis, C. D. (1997) Demand Forecasting and Inventory Control. New York: Wiley.
Lowas III, A. F. e F. W. Ciarallo (2016) Reliability and operations: keys to lumpy aircraft spare parts demand. Journal of Air Transport Management, v. 50, p. 30-40. DOI: 10.1016/j.jairtraman.2015.09.004
Machado, M. C.; M. A. G. E. Araujo; L. M. S. Urbina e F. R. Macau (2016) A qualitative study of outsourced aeronautical mainte-nance: The case of Brazilian organizations. Journal of Air Transport Management, V. 55, p. 176-184. DOI: 10.1016/j.jairtraman.2016.04.013
Makridakis, S. G.; S. C. Wheel Wright e R. J. Hyndman (1998) Forecasting: methods and applications. 3ª ed. New York: Wiley.
Mitchell, C.; R. Rappold e W. Faulkner (1983) An analysis of Air Force EOQ data with an application to reorder point calcula-tion. Management Science, v. 29, n. 4, p. 440-446.
Morris, M. (2013) Forecasting Challenges of the Spare Parts Industry. Journal of Business Forecasting, v. 32, n. 3, p. 22-27.
Papakostas, N.; P. Papachatzakis; V. Xanthakis; D. Mourtzis e G. Chryssolouris (2010) An approach to operational aircraft maintenance planning. Decis. Support Syst, v. 48, n. 4, p. 604-612. DOI: 10.1016/j.dss.2009.11.010
Pennings, C. L. P.; J. Van Dalen e E. A. Van der Laan (2017) Exploiting elapsed time for managing intermittent demand for spare parts. European Journal of Operational Research, v. 258, n. 3, p. 958-969. DOI: 10.1016/j.ejor.2016.09.017
Shenyang, L.; H. Zhijie; Z. Qian e Z. Chen (2017) Forecasting Method of Consumption Spare Parts of Mutual Support System Based on Stochastic Process. Procedia Engineering, v. 174, p. 706 – 710. DOI: 10.1016/j.proeng.2017.01.208
Shenstone, L. e R. J. Hyndman (2005) Stochastic models underlying Croston's method for intermittent demand forecast-ing. Journal of Forecasting, v. 24, n. 6, p. 389-402. DOI: 10.1002/for.963.
Syntetos, A. A. e J. E. Boylan (2001) On the bias of intermittent demand estimates. International Journal Production Economics, v. 71, p. 457-466. DOI: 10.1016/S0925-5273(00)00143-2
Teunter, R. H. e L. Duncan (2009) Forecasting intermittent demand: a comparative study. Journal of the Operational Research Society, v. 60, n. 3, p. 321-329. DOI: 10.1057/palgrave.jors.2602569.
Teunter, R. H. e B. Sani (2009) On the bias of Croston’s forecasting method. European Journal of Operational Research, v. 194, n. 1, p.177–183. DOI: 10.1016/j.ejor.2007.12.001
Tuomas, R.; K. Eemeli; A. M. Ville; V. Kai e P. H. Raimo (2001) A simulation model for military aircraft maintenance and availa-bility. In: 15th European Simulation Multi Conference, Prague, Czech.
Vaughan, T. S. (2005) Failure replacement and preventive maintenance spare parts ordering policy. Eur. J. Oper. Res, v. 161, n. 1, p. 183-190. DOI: 10.1016/j.ejor.2003.06.026
Vasumathi, B. e S. Saradha (2013) Forecasting Intermittent Demand for Spare Parts. International Journal of Computer Applications, v. 75, n. 11, p. 12-16. DOI: 10.5120/13154-0805.
Wang, W. (2012) A stochastic model for joint spare parts inventory and planned maintenance optimization. Eur. J. Oper. Res, v. 216, n. 1, p. 127-139. DOI: 10.1016/j.ejor.2011.07.031
Ward, J. B. (1978) Determining reorder points when demand is lumpy. Management Science, v. 24, n. 6, p. 623-632.DOI: 10.1287/mnsc.24.6.623
Watson, R. B. (1987) The effects of demand-forecast fluctuations on customer service and inventory cost when demands is lumpy. Journal of the Operational Research Society, v. 38, n. 1, p. 75-82. DOI: 10.2307/2582524
Willians, T. M. (1984) Stock control with sporadic and slow-moving demand. Journal of the Operational Research Society, v. 35, n. 10, p. 939-948. DOI: 10.2307/2582137
Williemain, T. R.; C. N. Smart; J. H. Shockor e P. A. Desautels (1994) Forecasting intermittent demand in manufacturing: A comparative evaluation of Croston’s method. International Journal of Forecasting, v. 10, n. 4, p. 529–538. DOI: 10.1016/0169-2070(94)90021-3
Willemain, T. R.; C. N. Smart e H. F. Schwartz (2004) A new approach to forecasting intermittent demand for service parts inventories. International Journal of Forecasting, v. 20, n. 3, p. 375–387. DOI: 10.1016/S0169-2070(03)00013-X
Winters, P. R. (1960) Forecasting Sales by Exponentially Weighted Moving Averages. Management Science, April 1, v. 6, n. 3, p. 324 – 342. DOI: 10.1287/mnsc.6.3.324
Wong, J. T. e S. C. Tsai (2012) A survival model for flight delay propagation. J. Air Transp. Manag, v. 23, p. 5-11. DOI: 10.1016/j.jairtraman.2012.01.016
Wu, C. L. e R. Caves (2000) Aircraft operational costs and turnaround efficiency at airports. J. Air Transp. Manag, vol. 6, n. 4, p. 201-208. DOI: 10.1016/S0969-6997(00)00014-4
Wu, C.L. e J. T. Wong (2007) Delay Propagation Modeling and the Implications in Robust Airline Scheduling. ATRS World Conference, San Francisco.
Downloads
Published
How to Cite
Issue
Section
License
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.