Classificação de indivíduos segundo comportamento individual relativo a viagens a partir de dados em painel obtidos por smartphones
DOI:
https://doi.org/10.14295/transportes.v27i2.1679Keywords:
Individual travel behavior, Passive data collection, Smartphones, Cluster analysis, K-means.Abstract
The characterization of travel behavior is a major issue in the activity-based travel analysis and, generally, is the response variable on travel demand modeling. The individual travel behavior classification can be realized using sectional data such as trip distances, travel mode choice or performed activities. Also, can be done using panel data, such as average values for multiple days or recurrent activities. Panel data are an important tool in behavioral analysis related to urban trips, providing extra dimension of analysis related to the individual temporal heterogeneity. However, obtaining these data is not trivial, requiring monetary and time resources. Thus, the main goal of this study is to classify individuals according to travel behavior from panel data. The secondary goal is related with panel data collection through smartphones. The potential of the study is validated by a case study with undergraduate and PhD students from São Carlos - SP, Brazil. With data voluntarily provided by the students, a k-means algorithm was employed considering, as input, four variables associated with trips carried out in three consecutive working days. Three different behavioral groups were obtained with differences concerning degree of motorization, recurrence of localities, number of trips performed, and average distances traveled.Downloads
References
Anda, C., Erath, A., & Fourie, P. J. (2017). Transport modelling in the age of big data. International Journal of Urban Sciences, v. 21,p. 19-42. DOI:10.1080/12265934.2017.1281150
Andrade, P. F. L., Gogoy, L. A., Giannotti, M. A., Cunha, C. B., & Yoshizaki, H. T. Y. (2017). Análise e visualização de dados de rastreamento para caracterização da logística urbana. Transportes, v. 25, n. 3, p. 24-35. DOI: 10.14295/transportes.v25i3.1353
Agard, B., Partovi Nia, V., & Trépanier, M. (2013). Assessing public transport travel behaviour from smart card data with advanced data mining techniques. In World Conference on Transport Research, v13, p. 15-18.
Arentze, T. A. e H. J. P. Timmermans (2005) Information gain, novelty seeking and travel: a model of dynamic activity-travel behavior under conditions of uncertainty. Transportation Research Part A, v.39, n.2-3, p.125-145. DOI:10.1016/j.tra.2004.08.002
Assemi, B., Jafarzadeh, H., Mesbah, M., & Hickman, M. (2018). Participants' perceptions of smartphone travel surveys. Transportation research part F: traffic psychology and behavior. v. 54, p. 338-348. DOI: 10.1016/j.trf.2018.02.005
Assirati, L. (2018). Análise da influência da vizinhança no comportamento individual relativo a viagens através de dados em painel. Tese (Doutorado) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos.
Axhausen, K. W., Zimmermann, A., Schönfelder, S., Rindsfüser, G., & Haupt, T. (2002). Observing the rhythms of daily life: A six-week travel diary. Transportation, Springer, v. 29, n. 2, p. 95–124, 2002. DOI: 10.1023/A:1014247822322
Daisy, N. S.; M. H. Hafezi; L. Liu e H. Millward (2018) Understanding and Modeling the Activity-Travel Behavior of University Commuters at a Large Canadian University. Journal of Urban Planning and Development, v.144, n.2, p.04018006. DOI:10.1061/(asce)up.1943-5444.0000442
Ding, L., & Zhang, N. (2016). A travel mode choice model using individual grouping based on cluster analysis. Procedia engineering, v. 137, p. 786-795, 2016. DOI: 10.1016/j.proeng.2016.01.317
Goulet-Langlois, G. (2015). Exploring regularity and structure in travel behavior using smart card data. Tese de Doutorado - Massachusetts Institute of Technology.
Hagerstrand, T. (1970) What about people in regional science? Papers of the Regional Science Association, v.24, p. 7-21. DOI: 10.1007/BF01936872
Hanson, S., & Huff, J. O. (1981). Assessing day-to-day variability in complex travel patterns. Transportation Research Record, v. 891, p. 18–24, 1981.
He, S., Miller, J. E., Scott, D. (2017). Big data and travel behaviour. Travel Behaviour and Society, v. 11. DOI: 10.1016/j.tbs.2017.12.003.
Hensher, D., & King, J. (2001) The Leading Edge of Travel Behavior Research. Travel behaviour research: The leading edge. Amsterdam: Elsevier, p. 1-13. DOI: 10.1016/b978-008043924-2/50000-6
Huff, J. O., & Hanson, S. (1986). Repetition and Variability in Urban Travel. Wiley Online Library, v. 18, n. 2, p. 97–114. DOI:10.1111/j.1538-4632.1986.tb00085.x
Kockelman, K. (1997) Travel behavior as function of accessibility, land use mixing, and land use balance: evidence from San Francisco Bay Area. Transportation Research Record: Journal of the Transportation Research Board, n.1607, p.116-125. DOI:10.3141/1607-16
MacQueen, J. (1967) Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, v.1, n.14, p.281-297.
Nogueira, E. L. P. (2018). O uso da calculadora gráfica GeoGebra no smartphone como ferramenta para o ensino das funções exponencial e logarítmica (Master's thesis, Brasil).
Ortúzar, J. de D., e Willumsen, L. G. (2011). Modelling transport. John Wiley & Sons. DOI:10.1002/9781119993308
Park, K., Ewing, R., Scheer, B. C., & Ara Khan, S. S. (2017). Travel Behavior in TODs vs. Non-TODs: Using Cluster Analysis and Propensity Score Matching. Transportation Research Record, p. 0361198118774159. DOI:10.1177/0361198118774159
Pas, E. I. (1987). Intrapersonal variability and model goodness-of-fit. Transportation Research Part A: General, Elsevier, v. 21, n. 6, p. 431–438, 1987. DOI:10.1016/0191-2607(87)90032-x
Pitombo, C. S.; E. Kawamoto e A. J. Sousa (2011) An exploratory analysis of relationships between socioeconomic, land use, activity participation variables and travel patterns. Transport Policy, v.18, n.2, p.347-357. DOI:10.1016/j.tranpol.2010.10.010
Pizzol, B. (2018) Padrões de atividades de residentes de Paraisópolis: Análise de dados de múltiplos dias coletados com smartphones. Dissertação (Mestrado) — Universidade de São Paulo.
Ramadurai, G. e S. Ukkusuri (2010) Dynamic user equilibrium model for combined activity-travel choices using activity-travel supernetwork representation. Networks and Spatial Economics, v.10, n.2, p.273-292. DOI:10.1007/s11067-008-9078-3
Ribeiro E. e A. L. Cunha (2016) Análise exploratória de método para definição de dia típico utilizando transformada wavelet e análise de agrupamento. Anais do XXX Congresso de Pesquisa e Ensino em Transportes, ANPET, Rio de Janeiro, v.1, p.1502–1513.
Safi, H., Assemi, B., Mesbah, M., & Ferreira, L. G. (2014). A framework for smartphone-based travel surveys: an empirical comparison with alternative methods in New Zealand. In 10th International Conference on Transport Survey Methods.
Sesham, A., Padmanabham, P., Goverdhan, A., & Sai Hanuman, A. (2014). Performance of clustering algorithms on home interview survey data employed for travel demand estimation. International Journal of Computer Science & Information Technology, v. 5, n. 3, p. 2767-2771.
Susilo, Y. O., & Axhausen, K. W. (2014). Repetitions in individual daily activity–travel–location patterns: a study using the Herfindahl–Hirschman Index. Transportation, Springer, v. 41, n. 5, p. 995–1011. DOI:10.1007/s11116-014-9519-4
Susilo, Y. O., & Kitamura, R. (2005). Analysis of day-to-day variability in an individual's action space: exploration of 6-week Mobidrive travel diary data. Journal of the Transportation Research Board, TRB, n. 1902, p. 124–133. DOI: 10.3141/1902-15.
Vlassenroot, S., Gillis, D., Bellens, R., Gautama, S. (2014). The Use of Smartphone Applications in the Collection of Travel Behaviour Data. International Journal of Intelligent Transportation Systems Research. v. 13, p. 1-11. DOI: 10.1007/s13177-013-0076-6.
Downloads
Published
How to Cite
Issue
Section
License
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.