Estimação da velocidade média em vias arteriais urbanas com uso do microssimulador VISSIM

Authors

  • Victor Macêdo Lacerda Universidade Federal do Ceará
  • Leonardo Gonçalves Ribeiro Universidade Federal do Ceará
  • Matheus Ferreira da Rocha Universidade Federal do Ceará
  • Diego Alves Tabosa Universidade Federal do Ceará
  • Manoel Mendonça de Castro Neto Universidade Federal do Ceará

DOI:

https://doi.org/10.14295/transportes.v27i4.1705

Keywords:

Traffic microsimulation, Car-following, Mudança de faixa, Wiedemann.

Abstract

One of the main challenges in urban traffic microscopic modeling is the estimation of the parameter of the driving behaviour models. The main objective of this paper is to propose a calibration methodology for VISSIM for modeling urban arterial roads, focusing on the estimation of the mean speed of cars and buses. The methodology was applied in two urban corridors in Fortaleza, resulting in calibration errors of 10% and 13% and validation errors of 19% and 9%. The second objective of this paper was to compare the proposed sequential calibration with the simultaneous calibration, in which all parameters are calibrated together based on the traffic measure of effectiveness to be estimated. The sequential calibration resulted in better estimates of the parameters, as this methodology decreases the chances of obtaining unrealistic sets of parameter
values.

Downloads

Download data is not yet available.

Author Biography

Manoel Mendonça de Castro Neto, Universidade Federal do Ceará

Departamento de Engenharia de Transportes

Programa de Pós-Graduação em Engenharia de Transportes - PETRAN

References

Aghabayk, K., M. Sarvi, W. Young e L. Kautzsch (2013) A novel methodology for evolutionary calibration of vissim by multi-threading. Australasian Transport Research Forum 2013 Proceedings. Brisbane, Australia.

Buisson, C., W. Daamen, V. Punzo, P. Wagner, M. Montanino e B. Ciuffo (2015) Calibration and validation principles. In: Daamen, W., C. Buisson e S. Hoogendorn (eds). Traffic Simulation and Data. Validation Methods and Applications. CRC Press. Florida, EUA.

Hollander, Y. e R. Liu (2008) The Principles of Calibrating Traffic Microsimulation Models. Transportation, v. 35, p. 347–362. DOI: 10.1007/s11116-007-9156-2.

Khavas, R., B. Hellinga e A. Masouleh (2017), Identifying Parameters to Model Traffic during Inclement Weather Using Mi-crosimulation. Transportation Research Record. No. 2613, pp. 52-60. DOI: 10.3141/2613-07.

Karakikes, I, M. Spangler e M Margreiter (2017) Designing a Vissim-Model for a motorway network with systematic calibration on the basis of travel time measurements. Transportation Research Procedia, vol 24, p. 171-179. DOI: 10.1016/j.trpro.2017.05.086.

Kim, J. e H. S. Mahmassami (2011) Correlated Parameters in Driving Behavior Models. Transportation Research Record, n. 2249, p 62-77. DOI: 10.3141/2249-09.

Kim, S-J, W. Kim, L.R. Rillet (2005) Calibration of Microsimulation Models Using Nonparametric Statistical Techniques. Trans-portation Research Record, n. 1935, p.111-119. DOI: 10.3141/1935-13.

Lacerda, V. e M. Castro-Neto (2014) Considerações sobre a calibração do modelo de car-following do vissim para vias arteri-ais urbanas. Anais do XXVIII Congresso da Associação Nacional de Pesquisa e Ensino em Transportes, ANPET, Curitiba, PR.

Lacerda, V. M. (2016) Estimação da Velocidade Média em vias urbanas com uso do microssimulador VISSIM. Dissertação de Mestrado, Programa de Mestrado em Engenharia de Transportes, Universidade Federal do Ceará, Fortaleza, CE.

Lidbe A. D., A. M. Hainen e S. L. Jones Jr. (2016) Comparative Study of Simulated Annealing and Genetic Algorithm for Calibra-tion of Microsimulation Model. Transportation Research Board 95th Annual Meeting. Washington, USA.

Liu, P., X. Qu, H. Yu, W. Wang e B. Cao (2012) Development of a VISSIM Simulation Model for U-Turns at Unsignalized Inter-sections. Journal of Transportation Engineering, v. 138, n.11, p. 1333-1339. DOI:10.1061/(ASCE)TE.1943-5436.0000438.

Lownes, N. e R. Machemehl (2006) Sensitivity of Simulation Capacity to Modification of VISSIM Driver Behavior Parameters. Transportation Research Record, n. 1988, p. 102-110. DOI: 10.3141/1988-15.

Medeiros, A. L., M. M. Castro-Neto, C. F. Loureiro e J. E. Bessa-Jr (2013) Calibração de Redes Viárias Urbanas Microssimuladas com o uso de Algoritmos Genéticos. Anais do XXVII Congresso da Associação Nacional de Pesquisa e Ensino em Transportes, ANPET, Belém, PA.

Park, B. e J. D. Schneeberger (2003) Microscopic Simulation model calibration and Validation. Case Study of VISSIM Simulation Model for a Coordinated Actuated Signal System. Transportation Research Record, n. 1856, p. 185–192. DOI: 10.3141/1856-20.

Park, B e H. M. Qi. (2005) Development and Evaluation of a Procedure for the Calibration of Simulation Models. Transportation Research Record, no. 1934, p. 208-217. DOI: 10.3141/1934-22.

Vasconcelos, L., Neto, L. Santos, S., Silva, A.B. e Seco, A. Calibration of the Gipps Car-Following Model Using Trajectory Data. Transportation Research Procedia 3, pp. 952-961. DOI: 10.1016/j.trpro.2014.10.075.

Warren, A. (2016), Calibration of microsimulation models to field-measured saturation flow rates on signalized arterials. Transportation Research Board 95th Annual Meeting. Washington, USA.

Published

2019-12-28

How to Cite

Lacerda, V. M., Ribeiro, L. G., Rocha, M. F. da, Tabosa, D. A., & Castro Neto, M. M. de. (2019). Estimação da velocidade média em vias arteriais urbanas com uso do microssimulador VISSIM. TRANSPORTES, 27(4), 63–75. https://doi.org/10.14295/transportes.v27i4.1705

Issue

Section

Artigos