Evaluation of the relationship between mechanical and hydraulic behavior for railway ballast: case study
DOI:
https://doi.org/10.14295/transportes.v28i3.1829Keywords:
Railway ballast. Shape properties. Mechanical behavior. Hydraulic behavior.Abstract
The performance of the rail ballast layer is dependent on the physical, mechanical and hydraulic characteristics as well as the characteristics of other components such as vehicle and track speed. This study aims to evaluate ballast materials, in various application phases, regarding mechanical and hydraulic behavior. For this purpose, traditional aggregate shape tests, advanced aggregate shape properties tests were performed using digital image processing, resilience modulus, permanent deformation and hydraulic conductivity. The results showed that greater permanent axial deformation does not necessarily imply lower hydraulic conductivity for the materials evaluated in this study. The mechanical behavior was changed from the changes in the shape properties of the aggregates (2D shape and texture), as well as the particle size. The hydraulic conductivity remained the same for the three materials evaluated, even after the mechanical tests. Overall, the three materials were considered prone to breakage, but although they went through construction and operation, they were all classified as clean.Downloads
References
AASHTO T 292 (1991) Interim method of test for resilient modulus of subgrade soils and untreated base/subbase materials, American Association of State Highway and Transportation Officials, Washington, D.C.
AASHTO (2016) Standard method of test for determining aggregate shape properties by means of digital image analysis, Washington, DC, TP81-10.
ABNT NBR 13292 (1995) Solo – Determinação do coeficiente de permeabilidade de solos granulares à carga constante, Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ.
ABNT NBR 5564 (2011) Via Férrea – Lastro-Padrão, Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ.
Al-Rousan, T. M. (2004) Characterization of aggregate shape properties using a computer automated system, Tese de Dou-torado, Texas A&M University, College Station, Texas, EUA.
AREMA (2013) Manual for railway engineering, Lanham: American Railway Engineering and Maintenance of Way Associa-tion, AREMA. AS 2758.7 (1996) Aggregates and rock for engineering purposes, Part 7: Railway ballast, Australian Standard, Sydney, Austrália.
Bessa, I. S.; V. T. F. Castelo Branco; J. B. Soares (2013) Análise da influência do tamanho nas propriedades de forma de agregados analisados através do processamento digital de imagens, In: 8º Congresso Brasileiro de Rodovias e Concessões, Santos, SP.
Diógenes, D. F. (2016) Avaliação das propriedades de forma de agregados utilizados em lastro ferroviário a partir do uso do Processamento Digital de Imagens, Dissertação de Mestrado, Universidade Federal do Ceará, Fortaleza, CE.
Diógenes, D. F.; R. S. Maia; V. T. F. Castelo Branco (2017) Evaluation of the ballast aggregates shape properties using digital image processing techniques. Bearing Capacity of Roads, Railways and Airfelds –Loizos et al. (Eds). Taylor & Francis Group, London. ISBN 978-1-138-29595-7
Feldman, F.; D. Nissen (2002) Alternative Testing Method for the Measurement of Ballast Fouling: Percentage Void Contamination. In: Conference on Railway Engineering, RTSA, Wollongong, p. 101-109.
Ferreira, W. L. G.; S. L. Costa; V. T. F. Castelo Branco; R. S. Motta (2015) Análise experimental e numérica da capacidade dre-nante de diferentes lastros ferroviários, In: XXIX Congresso de Pesquisa e Ensino em Transportes, ANPET, Ouro Preto, MG.
Huang, H. (2010) Discrete element modeling of railroad ballast using imaging based aggregate morphology characterization, Tese de Doutorado, University of Illinois at Urbana-Champaign, Urbana, IL, EUA.
Indraratna, B.; D. Ionescu; H. D. Christie (1998) Shear behavior of railway ballast based on large-scale triaxial tests, Journal of Geotechnical and Geoenvironmental Engineering, v. 124, n. 5, p. 439-449. DOI: 10.1061/(ASCE)1090-0241(1998)124:5(439)
Indraratna, B.; P. K. Thakur; J. S. Vinod (2010) Experimental and numerical study of railway ballast behavior under cyclic loading, International Journal of Geomechanics, v. 10, n. 4, p. 136-144. DOI: 10.1061/(ASCE)GM.1943-5622.0000055
Indraratna, B.; W. Salim; C. Rujikiatkamjorn (2011) Advanced rail geotechnology ballasted track, Taylor & Francis Group, London, UK.
Johnson, K. L. (1986) Plastic flow, residual stresses, and shakedown in rolling contact, In: 2nd International Conference on Contact Mechanics and Wear of Rail/Wheel Systems, University of Rhode Island, Kingston, University of Waterloo Press, Ontario, Canadá.
Klincevicius, M. G. Y. (2011) Estudo de propriedades, de tensões e do comportamento mecânico de lastros ferroviários, Dissertação de Mestrado, Escola Politécnica da Universidade de São Paulo, São Paulo, SP.
Lowe, J. (1964) Shear strength of course embankment dam materials. In: Huitieme Congresso des Grands Barrages, Èdimbourg, p. 745-761.
Merheb, A. H. M. (2014) Análise mecânica do lastro ferroviário por meio de ensaios triaxiais cíclicos, Dissertação de Mestrado, Escola Politécnica da Universidade de São Paulo, São Paulo, SP.
Merheb, A.; R. Motta; L. B. Bernucci; E. Moura; R. Costa; T. Vieira; F. Sgavioli (2013) Equipamento triaxial cíclico de grande escala para análise mecânica de lastro ferroviário. In: Transportes, v. 22, n. 3, p. 53-63. DOI: 10.14295/transportes.v22i3.804
Paim da Silva, F. H. (2018) Estudo do comportamento de um lastro ferroviário sob carga repetida em modelo físico de verdadeira grandeza, Dissertação de Mestrado, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ.
Paiva, C.; M. Ferreira; A. Ferreira (2014) Ballast drainage in brazilian railway infrastructures, Construction and Building Materials, v. 92, p. 58-63. DOI: 10.1016/j.conbuildmat.2014.06.006
Selig. E. T.; J. M. Waters (1994) Track geotechnology and substructure management, Thomas Telford Publications.
Sevi, A. S. (2008) Physical modelling of railroad ballast using parallel gradation scalling technique within the cyclical triaxial framework, Tese de Doutorado, Missouri University of Science and Technology, p.137.
Schmidt, S.; S. Shah; M. Moaveni; B. J. Landry; E. Tutumluer; C. Basye; D. Li (2017) Railway ballast permeability and cleaning considerations, Transportation Research Record: Journal of the Transportation Research Board, n. 2607, p. 24-32. DOI: 10.3141/2607-05
Tennakoon, N.; B. Indraratna; C. Rujikiatkamjorn; S. Nimbalkar; T. Neville (2012) The role of ballast fouling characteristics on the drainage capacity of rail substructure, Geotechnical Testing Journal, v. 35, n. 4, p. 629-640. DOI: 10.1520/GTJ104107
Vizcarra, G. O. C.; S. Nimbalkar; B. Indraratna; M. D. T. Casagrande (2014) Efeito da granulometria na deformação e quebra de lastro ferroviário, In: COBRASEG, XVII Brazilian Congress of Soil Mechanics and Geotechnical Engineering, p. 1-6.
Vizcarra, G. O. C. (2015) Efeito da granulometria no comportamento mecânico de lastro ferroviário, Tese de Doutorado, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ.
Downloads
Published
How to Cite
Issue
Section
License
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.