Influência dos parâmetros geométricos de rodovias na frequência e severidade de acidentes viários em curvas: o caso da BR 116

Authors

  • César Luís Andriola Universidade Federal do Rio Grande do Sul
  • Tânia Batistela Torres Universidade Federal do Rio Grande do Sul
  • Daniel Sergio Presta García Universidade Federal do Rio Grande do Sul

DOI:

https://doi.org/10.14295/transportes.v27i3.1997

Keywords:

Road Safety, Geometric Reconstitution, Geometric Parameters, Negative Binomial, Ordered Logit.

Abstract

Given the need to provide safer roads to users, this paper sought to identify the impact of geometrical parameters on the frequency and severity of accidents on curves in two-lane highway. This analysis was carried out on 225 kilometers (circa 140 miles) of BR 116 two-lane highway stretches in the state of Rio Grande do Sul. Road geometrical reconstruction made possible the build of 2007-2016 registered accidents characteristics database by Federal Highway Police (PRF) and the geometrical parameters, allowing accidents frequency and severity modeling through these parameters. Two econometric models were estimated: (i) negative binomial (NB) for frequency modeling; and (ii) ordered logit (OL) for accidents' severity. The results show that the increase in downward slope and superelevations contribute to the increase of accidents' frequency, though these helped on reducing its severity.

Downloads

Download data is not yet available.

References

AASHTO (2011) A Policy on Geometric Design of Highways and Streets. American Association Of State Highway And Trans-portation Officials. (AASTHO) 5th ed. Washington, D.C.

Agbelie, B. R. D. K. (2016a) A comparative empirical analysis of statistical models for evaluating highway segment crash fre-quency. Journal of Traffic and Transportation Engineering, v. 3, n. 4, p. 374–379. DOI: 10.1016/j.jtte.2016.07.001

Agbelie, B. R. D. K. (2016b) Random-parameters analysis of highway characteristics on crash frequency and injury severity. Journal of Traffic and Transportation Engineering, v. 3, n. 3, p. 236–242. DOI: 10.1016/j.jtte.2015.09.006

Akaike H. (1992) Information Theory and an Extension of the Maximum Likelihood Principle. In: Kotz S. e N. L. Johnson (eds) Breakthroughs in Statistics. Springer Series in Statistics (Perspectives in Statistics). Springer, New York, NY. DOI: 10.1007/978-1-4612-0919-5_38

Anastasopoulos, P. C.; V. N. Shankar; J. E. Haddockc e F. L. Mannering (2012) A multivariate tobit analysis of highway accident-injury-severity rates. Accident Analysis & Prevention, v. 45, p. 110–119. DOI: 10.1016/j.aap.2011.11.006

Aram, A. (2010) Effective Safety Factors on Horizontal Curves of Two-lane Highways. Journal of Applied Sciences, v. 10, n. 22, p. 2814–2822. DOI: 10.3923/jas.2010.2814.2822

Bierlaire, M. (2003). Biogeme: a free package for the estimation of discrete choice models. Proceedings of the 3rd Swiss Transportation Research Conference, Ascona, Switzerland.

Bonneson, J. A. (2000) Superelevation distribution methods and transition designs. NCHRP Report 439, Transportation Research Board, Washington, DC, USA.

Brasil. (2011) Lei n.° 13.379, de 6 de janeiro de 2011. Dispõe sobre o Sistema Nacional de Viação - SNV. Diário Oficial [da] Republica Federativa do Brasil. Brasília, DF.

Castro, M.; R. Paleti e C.R. Bhat (2013) A spatial generalized ordered response model to examine highway crash injury seve-rity. Accident Analysis & Prevention, v. 52, p. 188–203. DOI: 10.1016/j.aap.2012.12.009

Chen, C.; G. Zhanga; H. Huang; J. Wangc e R. A. Tarefder (2016) Examining driver injury severity outcomes in rural non-interstate roadway crashes using a hierarchical ordered logit model. Accident Analysis & Prevention, v. 96, p. 79–87. DOI: 10.1016/j.aap.2016.06.015

Chikkakrishna, N. K.; M. Parida e S. S. Jain (2017) Identifying safety factors associated with crash frequency and severity on nonurban four-lane highway stretch in India. Journal of Transportation Safety & Security, v. 9, n. sup1, p. 6–32, 30. DOI: 10.1080/19439962.2016.1150927

Colin, C. A., e Pravin, T. (2013) Regression analysis of count data, Second edition. Regression Analysis of Count Data, Second Edition. doi:10.1017/CBO9781139013567

Cruz, P.; T. Echaveguren e P. González (2017) Estimación del potencial de rollover de vehículos pesados usando principios de confiabilidad. Revista ingeniería de construcción, v. 32, n. 1, p. 5–14. DOI: 10.4067/S0718-50732017000100001

De Oña, J.; R. O. Mujalli e F. J. Calvo (2011) Analysis of traffic accident injury severity on Spanish rural highways using Bayes-ian networks. Accident Analysis & Prevention, v. 43, n. 1, p. 402–411. DOI: 10.1016/j.aap.2010.09.010

DNER (1999) Manual de Projeto Geométrico de Rodovias Rurais. Departamento Nacional das Estradas de Rodagem (DNER), Rio de Janeiro, RJ

Dong, C; S. S. Nambisan; S. H. Richards e Z. Ma (2015) Assessment of the effects of highway geometric design features on the frequency of truck involved crashes using bivariate regression. Transportation Research Part A: Policy and Practice, v. 75, p. 30–41. DOI: 10.1016/j.tra.2015.03.007

DPRF (2017) Acidentes. Departamento De Policia Rodoviária Federal (DPRF). Disponível em: <<https://www.prf.gov.br/portal/dados-abertos/acidentes>>. Acesso em: 10 set. 2017

Eck, R. W.; French, L. J. (2002) Effective Superelevation for Large Trucks on Sharp Curves and Steep Grades. West Virginia University, Report 153. Morgantown, WV, USA

Garcia, D. S. P.; L. A. Lindau e C. T. Nodari (2013) Multivariate Operating Speed Forecasting Model Based on the Geometric Elements of Two-Lane Highways. Journal of Traffic and Logistics Engineering, v. 1, n. 2, p. 97–103. DOI: 10.12720/jtle.1.2.97-103

Garnaik, M. M. (2014) Effects of Highway geometric elements on Accident Modelling. Thesis (Master of Technology in Trans-portation Engineering). Department of Civil Engineering, National Institute of Technology Rourkela Odisha, India.

Greene, W. W. H. (2012) Econometric Analysis. 7. ed. Edition. New Jersey: Pearson.

Hair, J. F.; W. C. Black; B. J. Babin; R. E. Anderson e R. L. Tatham (2009) Análise multivariada de dados. Bookman Editora.

Hilbe, J. M. (2011) Negative Binomial Regression. 2nd ed. Cambridge University Press. DOI: 10.1017/CBO9780511973420

Hilbe, J. M. (2014) Modelling Count Data. Obtido de www.cambridge.org

Hosseinpour, M.; A. S. Yahaya; A. F. Sadullah; N. Ismail e S. M. R. Ghadiri (2016) Evaluating the effects of road geometry, envi-ronment, and traffic volume on rollover crashes. Transport, v. 31, n. 2, p. 221–232. DOI: 10.3846/16484142.2016.1193046

ITF (2016) Zero Road Deaths and Serious Injuries: Leading a Paradigm Shift to a Safe System. International Transport Fo-rum. (ITF). OECD Publishing, Paris. DOI: 10.1787/9789282108055-en

Iyinam, A. F.; S. Iyinam e M. Ergun (1997) Analysis of relationship between highway safety and road geometric design ele-ments: Turkish case. Technical University of Istanbul, Faculty of Civil Engineering, Turkey.

Ma, J. e Z. Li (2010) Bayesian Modeling of Frequency-Severity Indeterminacy with an Application to Traffic Crashes on Two-Lane Highways. American Society of Civil Engineers. Disponível em: <http://ascelibrary.org/doi/10.1061/41127%28382%29110>. Acesso em: 24 maio. 2018. DOI: 10.1061/41127(382)110

Ma, Z; W. Zhao; S. I. Chien e C. Dong (2015) Exploring factors contributing to crash injury severity on rural two-lane high-ways. Journal of Safety Research, v. 55, p. 171–176. 10.1016/j.jsr.2015.09.003

Mannering, F. L. e C. R. Bhat (2014) Analytic methods in accident research analytic methods in accident research: methodo-logical frontier and future directions. Analytic Methods in Accident Research. v. 1, p. 1–22. DOI: 10.1016/j.amar.2013.09.001

Mccullangh, P. e J. A. Nelder (1989) Generalized linear models. 2nd ed. [S.l.]: Chapman and Hall/CRC Monographs on Statis-tics & Applied Probability.

Milton, J. C.; V. N. Shankar e F. L. Mannering (2008) Highway accident severities and the mixed logit model: An exploratory empirical analysis. Accident Analysis & Prevention, v. 40, n. 1, p. 260–266. DOI: 10.1016/j.aap.2007.06.006

Ortúzar, J. D. e L. G. Willumsen (2011) Modelling Transport. 4th ed., London: Wiley. DOI: 10.1109/MITS.2011.2178881

Radimsky, M.; R. Matuszkova e O. Budik (2016) Relationship between horizontal curves design and accident rate. Jurnal Teknologi, v. 78, n. 5–2. DOI: 10.11113/jt.v78.8493

Rengarasu, T.; T. Hagiwara e M. Hirasawa (2009) Effects of Road Geometry and Cross-Section Variables on Traffic Accidents: Study Using Homogeneous Road Segments. Transportation Research Record: Journal of the Transportation Research Board, v. 2102, p. 34–42. DOI: 10.3141/2102-05

Renski, H.; A. Khattak e F. Council (1999) Effect of Speed Limit Increases on Crash Injury Severity: Analysis of Single-Vehicle Crashes on North Carolina Interstate Highways. Transportation Research Record: Journal of the Transportation Research Board, v. 1665, p. 100–108. DOI: 10.3141/1665-14

Sameen, M. I. e B. Pradhan (2016) Forecasting severity of traffic accidents using road geometry extracted from mobile laser scanning data. Conference on Remote Sensing (ACRS).

Schneider, W. H.; P. T. Savolainen e D. N. Moore (2010) Effects of Horizontal Curvature on Single-Vehicle Motorcycle Crashes along Rural Two-Lane Highways. Transportation Research Record: Journal of the Transportation Research Board, v. 2194, n. 1, p. 91–98. DOI: 10.3141/2194-11

Schneider, W. H.; P. T. Savolainen e K. Zimmerman (2009) Driver Injury Severity Resulting from Single-Vehicle Crashes along Horizontal Curves on Rural Two-Lane Highways. Transportation Research Record: Journal of the Transportation Re-search Board, v. 2102, n. 1, p. 85–92. DOI: 10.3141/2102-11

Shankar, V.; F. Mannering e W. Barfield (1995) Effect of roadway geometrics and environmental factors on rural freeway accident frequencies. Accident Analysis & Prevention, v. 27, n. 3, p. 371–389. DOI: 10.1016/0001-4575(94)00078-Z

Shrestha, P. P. e K. J. Shrestha (2017) Factors associated with crash severities in built-up areas along rural highways of Neva-da: A case study of 11 towns. Journal of Traffic and Transportation Engineering (English Edition), v. 4, n. 1, p. 96–102. DOI: 10.1016/j.jtte.2016.08.003

Small, K.A. (1987) Discrete Choice Model for Ordered Alternatives, Econometrica, v. 55, n. 2, p. 409.

Torbic, D. J; E. T. Donnell; S. N. Brennan; A. Brown; M. K. O’Laughlin e K. M. Bauer (2014) Superelevation Criteria for Sharp Horizontal Curves on Steep Grades. Washington, D.C.: Transportation Research Board. DOI: 10.17226/22312

Treat. J.; N. S. Tumbas; S. T. McDonald; D. Shinar; R. D. Hume; R. E. Mayer; R. L. Stansifer e N. J. Castellan (1979) Tri-level study of the causes of traffic accidents. Executive summary. Vision Research. v. 42, n. 21, p. 2419–2430.

United Nations. (2011) Global Plan for The Decade of Action for Road Safety 2011–2020. Disponível em: www.who.int/roadsafety/decade of action/plan/english.pdf

United Nations. (2017) Sustainable Development Goals. United Nations Department of Public Information. Obtido 20 de junho de 2018, de http://www.undp.org/content/undp/en/home/sustainable-development-goals.html

WHO (2011) Saving Millions of lives: Decade of action for road safety 2011-2020. World Health Organization (WHO). WHO publication (Vol. 11). Obtido de http://who.int/violence_injury_prevention/publications/road_traffic/saving_millions_lives_en.pdf

Published

2019-11-13

How to Cite

Andriola, C. L., Torres, T. B., & García, D. S. P. (2019). Influência dos parâmetros geométricos de rodovias na frequência e severidade de acidentes viários em curvas: o caso da BR 116. TRANSPORTES, 27(3), 1–14. https://doi.org/10.14295/transportes.v27i3.1997

Issue

Section

Artigos Vencedores do Prêmio ANPET Produção Científica