Bus passenger counts using Wi-Fi signals: some cautionary findings

Authors

  • Diego Benites Paradeda Universidade Federal de Santa Catarina
  • Werner Kraus Junior Universidade Federal de Santa Catarina
  • Rodrigo Castelan Carlson Universidade Federal de Santa Catarina

DOI:

https://doi.org/10.14295/transportes.v27i3.2039

Keywords:

Bus ridership surveys, Wi-Fi user detection, Transit OD estimation.

Abstract

The viability of bus ridership surveys based on the detection of Wi-Fi MAC addresses of portable devices is analyzed. Motivation for the study arises from the apparent contradiction between success cases reported in the literature and empirical findings from field experiments we have carried out. Requirements for proper passenger identification in transit systems are used as the basis for evaluating the capabilities of commonly available detection hardware and software. More specifically, elapsed time intervals between detections of the same device are taken as the requirement for determination of the state of the device and, hence, the identification of the holder as a passenger. For instance, when performing boarding and alighting surveys with detection equipment placed onboard, it is necessary that multiple detections take place from right after passenger boarding and before he/she gets off, thus enabling accurate estimation of the trip origin and destination. Experimental results in controlled and uncontrolled trials indicate that off-the-shelf components used with available open source software may not grant successful detection. For instance, we have found times of up to 40 s for the first detection of 86% of nearby devices and an average of 80 s for a second detection of devices in the controlled experiment. For the uncontrolled experiment of rides on buses, significant differences between manual counts and detected devices were found. As a result of these empirical observations, careful assessment of the existing detection schemes used in ridership surveys is recommended.

Downloads

Download data is not yet available.

Author Biography

Diego Benites Paradeda, Universidade Federal de Santa Catarina

Doutorando de Engenharia de Automação e Sistemas na Universidade Federal de Santa Catarina, com foco em dispositivos Wi-Fi e análise de dados voltado para os sistemas de transportes.

References

Abedi, N.; A. Bhaskar and E. Chung (2013) Bluetooth and Wi-Fi MAC address based crowd data collection and monitoring: benefits, challenges and enhancement. 36th Australasian Transport Research Forum. Queensland University of Technol-ogy, Brisbane.

Alexander, L.; S. Jiang; M. Murga and M. C. González (2015) Origin–destination trips by purpose and time of day inferred from mobile phone data. Transportation Research Part C: Emerging Technologies, v. 58, p. 240– 250. DOI: 10.1016/j.trc.2015.02.018

Balboni, Mariana (2018). Pesquisa sobre o uso das tecnologias da informação e da comunicação no Brasil: TIC domicílios 2018. São Paulo: Comitê Gestor da Internet Brasil.

Bekhor, S.; Y. Cohen and C. Solomon (2013) Evaluating long-distance travel patterns in Israel by tracking cellular phone positions. Journal of Advanced Transportation, v. 47, n. 4, p. 435–446. DOI: 10.1002/atr.170

Çolak, S.; L. P. Alexander; B. G. Alvim; S. R. Mehndiratta and M. C. González (2015) Analyzing cell phone location data for urban travel: current methods, limitations, and opportunities. Transportation Research Record: Journal of the Transportation Research Board, v. 2526, p. 126–135. DOI: 10.3141/2526-14

Cunche, M. (2014) I know your MAC Address: Targeted tracking of individual using Wi-Fi. Journal of Computer Virology and Hacking Techniques, v. 10, n. 4, p. 219–227. DOI: 10.1007/s11416-013-0196-1

Dunlap, M.; Z. Li; K. Henrickson and Y. Wang (2016) Estimation of origin and destination information from Bluetooth and Wi-Fi sensing for transit. Transportation Research Record: Journal of the Transportation Research Board, v. 2595, p. 11–17. DOI: 10.3141/2595-02

El-Tawab, S.; R. Oram; M. Garcia; C. Johns and B. B. Park (2016) Poster: Monitoring transit systems using low cost WiFi tech-nology. 2016 IEEE Vehicular Networking Conference. DOI: 10.1109/VNC.2016.7835951

Günther, S. M.; M. Leclaire; J. Michaelis and G. Carle (2014) Analysis of injection capabilities and media access of IEEE 802.11 hardware in monitor mode. 2014 IEEE Network Operations and Management Symposium, p. 1–9. DOI: 10.1109/NOMS.2014.6838262

Håkegård, J. E.; T. A. Myrvoll and T. R. Skoglund (2018) Statistical modelling for estimation of OD matrices for public transport using Wi-Fi and APC data. 21st International Conference on Intelligent Transportation Systems. DOI: 10.1109/ITSC.2018.8570009

IEEE (2007) IEEE standard for information technology-telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11. Institute of Electrical and Electronics Engineers, p. 1005–1010. DOI: 10.1109/IEEESTD.2007.373646

Jiang, S.; J. Ferreira and M. C. Gonzalez (2017) Activity-based human mobility patterns inferred from mobile phone data: a case study of Singapore. IEEE Transactions on Big Data, v. 3, n. 2, p. 208–219. DOI: 10.1109/TBDATA.2016.2631141

Lind, A.; A. Hadachi and O. Batrashev (2017) A new approach for mobile positioning using the CDR data of cellular networks. 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems, p. 315–320. DOI: 10.1109/MTITS.2017.8005687

Meirelles, F. S. (2019). 30ª Pesquisa Anual do Uso de TI nas Empresas, FGVcia: Centro e Tecnologia de Informação Aplicada da EAESP.

Nunes, E. H. M. (2018) “Estimativa da ocupação utilizando sensoriamento Wi-Fi de telefones móveis: Uma aplicação no transporte público urbano de passageiros por ônibus”. Departamento de Transportes, Escola Politécnica da Universidade de São Paulo, Brazil. DOI: 10.11606/D.3.2019.tde-18072019-112008

O'Flaherty, C. A. (1996) Transport planning and traffic engineering. Elsevier

Paradeda, D. B.; W. K. Junior and R. C. Carlson (2018) Estimativa de embarque e desembarque de passageiros por detecção de sinal de Wi-Fi de dispositivos Móveis. XXXII Congresso de Pesquisa e Ensino em Transportes, p. 1048–1059.

Roriz Jr., M. P. and R. A. Medrano (2018) UAI-FI: Um método baseado em aprendizado de máquina para contagem automática de passageiros utilizando sinais de Wi-Fi. XXXII Congresso de Pesquisa e Ensino em Transportes, p. 1048–1059.

Turner, J. S. (1988) Design of a broadcast packet switching network. IEEE Transactions on Communications, v. 36, n. 6, p. 734–743. DOI: 10.1109/26.2794

Wang, S.-L.; J. Wang; C. Feng and Z.-P. Pan (2016) Wireless network penetration testing and security auditing. 3rd Annual International Conference on Information Technology and Applications. DOI: 10.1051/itmconf/20160703001

Zhang, Y.; X. Qin; S. Dong and B. Ran (2010) Daily O-D matrix estimation using cellular probe data. Transportation Research Board 89th Annual Meeting. Washington DC, United States. DOI: 10.1016/j.trpro.2018.10.013

Downloads

Published

2019-11-13

How to Cite

Paradeda, D. B., Kraus Junior, W., & Carlson, R. C. (2019). Bus passenger counts using Wi-Fi signals: some cautionary findings. TRANSPORTES, 27(3), 115–130. https://doi.org/10.14295/transportes.v27i3.2039

Issue

Section

Artigos Vencedores do Prêmio ANPET Produção Científica