Structural analysis of reinforced asphalt pavement by impregnated surface geotextile
DOI:
https://doi.org/10.14295/transportes.v28i3.2203Keywords:
Composite hot asphalt mixtures. Geosynthetic reinforcement. Geotextile. Surface impregnation. Structural analysis.Abstract
The present research contemplated the mechanistic-empirical analysis of unreinforced and reinforced asphalt pavements by impregnated surface geotextile. The mechanical properties determined in the laboratory derive from the tensile strength by diametral compression (TS), resilient modulus (RM) and fatigue life (Nf) tests. Insertion of the reinforcement into the asphalt mixture provided TS and RM increments, as well as reducing the risk of fatigue cracking. In the structural analyzes, horizontal tensile stresses and vertical compression stresses at the lower edge of the binder course were verified. The analysis based on the statically determined mechanical strength parameter (TS) showed a structural superiority of the unreinforced system compared to the geotextile reinforced system, in contrast to the analysis based on the dynamically determined structural response parameter (Nf). It is assumed that, because it does not translate the mobilized strength by asphalt concrete under dynamic loading condition, the structural safety analysis based on static properties masks the improvements generated by the geosynthetic reinforcement.
Downloads
References
Airey, G. D. (2004) Fundamental binder and practical mixture evaluation of polymer modified bituminous materials. Inter-national Journal of Pavement Engineering, v. 5, n. 3, p. 137-151. DOI: 10.1080/10298430412331314146.
Aldea, C. M. and J. R. Darling (2004) Effect of coating on fiberglass geogrid performance. Fifth International RILEM Confer-ence on Reflective Cracking in Pavements, France, n. 37, p. 81-88.
Alhasan, A.; A. Ali; D. Offenbacker; O. Smadi and C. Lewis-Beck (2018) Incorporating spatial variability of pavement founda-tion layers stiffness in reliability-based mechanistic-empirical pavement performance prediction. Transportation Ge-otechnics, v. 17, p. 1–13. DOI:10.1016/J.TRGEO.2018.08.001.
ARA, I. and ERES Division (2004) Guide for Mechanistic–Empirical Design of New and Rehabilitated Pavement Structures. National Cooperative Highway Research Program, NCHRP Project, Canada, v. 1-37A, 219p.
Brown, S. F.; N. H. Thom and P. J. Sanders (2001) A study of grid reinforced asphalt to combat reflection cracking (with dis-cussion). Journal of the Association of Asphalt Paving Technologists, v. 70, p. 543-571.
Caltabiano, M. A. and J. M. Brunton (1991) Reflection cracking in asphalt overlays. Association of Asphalt Paving Technolo-gists Technical Sessions, USA, v. 60, p. 310-320.
Carmo, C. A. T. (1998) A avaliação do módulo de resiliência através de ensaios triaxiais dinâmicos de dois solos compactados e a sua estimativa a partir de ensaios rotineiros, dissertação (Mestrado em Engenharia de Transportes), Escola de Engenharia de São Carlos da Universidade de São Paulo, São Carlos, 131p.
Chantachot, T.; W. Kongkitkul; S. Youwai and P. Jongpradist (2016) Behaviours of geosynthetic-reinforced asphalt pavements investigated by laboratory physical model tests on a pavement structure. Transportation Geotechnics, v. 8, p. 103–118. DOI:10.1016/J.TRGEO.2016.03.004.
DNER (1995) ME 043 - Misturas betuminosas a quente – ensaio Marshall. Departamento Nacional de Estradas de Rodagem, Rio de Janeiro, 11p.
DNIT (2006a) ES 031 - Pavimentos Flexíveis – Concreto Asfáltico. Especificação de Serviço. Departamento Nacional de Infra-estrutura e Transportes. Rio de Janeiro, 14 p.
DNIT (2006b) EM 095 - Cimentos asfálticos de petróleo. Especificação de material. Departamento Nacional de Infraestrutura e Transportes. Rio de Janeiro, 6p.
DNIT (2012) ES 145 - Pavimentação – Pintura de ligação com ligante asfáltico. Especificação de serviço. Departamento Naci-onal de Infraestrutura e Transportes. Rio de Janeiro, 7p.
DNIT (2018a) ME 135 - Pavimentação asfáltica – Misturas asfálticas – Determinação do módulo de resiliência. Método de ensaio. Departamento Nacional de Infraestrutura e Transportes. Rio de Janeiro, 6p.
DNIT (2018b) ME 136 - Pavimentação asfáltica - Misturas asfálticas – Determinação da resistência à tração por compressão diametral. Método de Ensaio. Departamento Nacional de Infraestrutura e Transportes. Rio de Janeiro, 6 p.
DNIT (2018c) ME 183 - Pavimentação asfáltica – Ensaio de Fadiga por compressão diametral à tensão controlada. Método de ensaio. Departamento Nacional de Infraestrutura e Transportes. Rio de Janeiro, 15p.
Ferrotti, G.; F. Canestrari; E. Pasquini and A. Virgili (2012) Experimental evaluation of the influence of surface coating on fiberglass geogrid performance in asphalt pavements. Geotextiles and Geomembranes, v. 34, p. 11–18. DOI:10.1016/J.GEOTEXMEM.2012.02.011.
Gonzalez-Torre, I.; M. A. Calzada-Perez; A. Vega-Zamanillo and D. Castro-Fresno (2015) Experimental study of the behaviour of different geosynthetics as anti-reflective cracking systems using a combined-load fatigue test. Geotextiles and Ge-omembranes, v. 43, n. 4, p. 345–350. DOI: 10.1016/J.GEOTEXMEM.2015.04.001.
Khodaii, A.; S. Fallah and F. M. Nejad (2009) Effects of geosynthetics on reduction of reflection cracking in asphalt overlays. Geotextiles and Geomembranes, v. 27, n. 1, p. 1–8. DOI: 10.1016/J.GEOTEXMEM.2008.05.007.
Kumar, V. V. and S. Saride (2018) Evaluation of cracking resistance potential of geosynthetic reinforced asphalt overlays using direct tensile strength test. Construction and Building Materials, v. 162, p. 37–47. DOI: 10.1016/J.CONBUILDMAT.2017.11.158.
Li, P.; J. Liu and S. Zhao (2016) Performance of multiaxial paving interlayer–reinforced asphalt pavement. Journal of Materi-als in Civil Engineering, v. 28, n. 7. DOI:10.1061/(ASCE)MT.1943-5533.0001543.
Liu, X.; X. Zhang; H. Wang and B. Jiang (2019) Laboratory testing and analysis of dynamic and static resilient modulus of subgrade soil under various influencing factors. Construction and Building Materials, v. 195, p. 178–186. DOI:10.1016/J.CONBUILDMAT.2018.11.061.
Ponte, R. S.; V. T. F. C. Branco; A. S. Holanda e J. B. Soares (2014) Avaliação de diferentes metodologias para obtenção do Mó-dulo de Resiliência de misturas asfálticas. Revista Transportes, v. 22, n. 2, p. 85-94. DOI: 14295/transportes.v22i2.792.
Prieto, J. N.; J. Gallego and I. Perez (2007) Application of the wheel reflective cracking test for assessing geosynthetics in anti-reflection pavement cracking systems. Geosynthetics International, v. 14, n. 5, p. 287–297. DOI: 10.1680/gein.2007.14.5.287.
Raab, C. and M. N. Partl (2009) Interlayer bonding of binder, base and subbase layers of asphalt pavements: long-term performance. Construction and Building Materials, v. 23, n. 8, p. 2926-2931. DOI: 10.1016/j.conbuildmat.2009.02.025.
Rezende, J. P.; H. N. Pitanga; T. O. Silva; N. F. Silva e G. S. Pereira (2018) Análise comparativa dos efeitos da impregnação do geotêxtil na resposta mecânica de misturas a quente compostas. Anais do XXXII Congresso de Pesquisa e Ensino em Transportes (ANPET), Gramado - RS, p. 1608-1619.
Saride, S. and V. V. Kumar (2017) Influence of geosynthetic-interlayers on the performance of asphalt overlays on pre-cracked pavements. Geotextiles and Geomembranes, v. 45, n. 3, p. 184–196. DOI: 10.1016/J.GEOTEXMEM.2017.01.010.
Sudarsanan, N.; R. Karpurapu and V. Amrithalingam (2018) An investigation on the interface bond strength of geosynthetic-reinforced asphalt concrete using Leutner shear test. Construction and Building Materials, v. 186, p. 423–437. DOI:10.1016/J.CONBUILDMAT.2018.07.010.
Tang, X.; S. M. Stoffels and A. M. Palomino (2016) Mechanistic-empirical approach to characterizing permanent deformation of reinforced soft soil subgrade. Geotextiles and Geomembranes, v. 44, n. 3, p. 429–441. DOI: 10.1016/J.GEOTEXMEM.2015.06.004.
Tayfur, S.; H. Ozen and A. Aksoy (2007) Investigation of rutting performance of asphalt mixtures containing polymer modifi-ers. Construction and Building Materials, v. 21, n. 2, p. 328–337. DOI: 10.1016/J.CONBUILDMAT.2005.08.014.
Torquato e Silva, S. A.; J. B. Soares e S. H. A. Barroso (2018) Modelagem constitutiva e caracterização empírica da interface revestimento asfáltico - base granular. Revista Transportes, v. 26, n. 2, p. 180-190. DOI: 10.14295/transportes.v25i1.1661.
Virgili, A.; F. Canestrari; A. Grilli and F. A. Santagata (2009) Repeated load test on bituminous systems reinforced by geosyn-thetics. Geotextiles and Geomembranes, v. 27, n. 3, p. 187–195. DOI: 10.1016/J.GEOTEXMEM.2008.11.004.
Vismara, S.; A. A. A. Molenaar; M. Crispino and M. R. Poot (2012) Toward a better understanding of benefits of geosynthetics embedded in asphalt pavements. Transportation Research Record, v. 2310, n. 1, p. 72–80. DOI: 10.3141/2310-08.
Wang, L.; Y. Hou; L. Zhang and G. Liu (2017) A combined static-and-dynamics mechanics analysis on the bridge deck pave-ment. Journal of Cleaner Production, v. 166, p. 209–220. DOI: 10.1016/J.JCLEPRO.2017.08.034.
Zamora-Barraza, D.; M. A. Calzada-Pérez; D. Castro-Fresno and A. Vega-Zamanillo (2011) Evaluation of anti-reflective cracking systems using geosynthetics in the interlayer zone. Geotextiles and Geomembranes, v. 29, n. 2, p. 130–136. DOI:10.1016/J.GEOTEXMEM.2010.10.005.
Zamora-Barraza, D.; M. Calzada-Peréz; D. Castro-Fresno and A. Vega-Zamanillo (2010) New procedure for measuring adher-ence between a geosynthetic material and a bituminous mixture. Geotextiles and Geomembranes, v. 28, n. 5, p. 483–489. DOI: 10.1016/J.GEOTEXMEM.2009.12.010.
Downloads
Published
How to Cite
Issue
Section
License
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.