Modeling travel mode choice under social influence for the brazilian context
DOI:
https://doi.org/10.14295/transportes.v28i3.2214Keywords:
Travel mode choice. Social influence. Social network. Travel behavior.Abstract
This study aims to define a behavioral model to verify whether there is social influence on the travel mode choice made in the Brazilian context. To achieve this goal, a survey was carried out at the Darcy Ribeiro campus of the University of Brasilia, via which travel and social data were collected, and which were analyzed by a multinomial logit model. The results of the research reveal that there is social influence on the travel mode choice made by the students commuting to the University of Brasilia, especially when considering sustainable modes (biking and walking) and carpooling: the odds of an ego using a sustainable mode are 76% higher if there is an increase of 10% in the proportion of alters who use sustainable modes. The odds of an ego carpooling are 27% higher when their alter’s carpooling increases by 10%. Knowledge of social influence allows a better perception of relevant factors for the decision-making process. Smart urban mobility policies must consider this perspective, especially those policies that aim to promote sustainable and shared travel modes as alternatives to high levels of automobile use.
Downloads
References
Aronson, E.; T. D. Wilson and R. M. Akert (2009) Social Psychology (7th Edition). USA: Prentice Hall, Inc.
Aruwajoye, A. O. (2016) Previsão de Demanda de Transportes no Campus Darcy Ribeiro da Universidade de Brasília. Monografia de Projeto Final de Graduação. Brasília: Departamento de Engenharia Civil e Ambiental, Universidade de Brasília. Brasília-DF 95p, http://bdm.unb.br/handle/10483/18417
Axhausen, K. W. (2008) Social networks, mobility biographies, and travel: Survey challenges. Environment and Planning B: Planning and Design, p. 981-996. DOI: 10.1068/b3316t.
Carrasco, J. A. and E. J. Miller (2006) Exploring the propensity to perform social activities: A social network approach. Transportation. v. 33. p. 463-480. DOI: 10.1007/s11116-006-8074-z.
Carrasco, J. A. and E. J. Miller (2009) The social dimension in action: A multilevel, personal networks model of social activity frequency between individuals. Transportation Research Part A: Policy and Practice. v. 43. p. 90-104. DOI: 10.1016/j.tra.2008.06.006.
Carrasco, J. A.; B. Hogan; B. Wellman and E. J. Miller (2008) Collecting social network data to study social activity-travel behavior: An egocentric approach. Environment and Planning B: Planning and Design. v.: 35. p 961-980. DOI: 10.1068/b3317t.
DPO - Decanato de Planejamento e Orçamento. (2018) Anuário Estatístico da UnB 2018, período: 2013 a 2018. Brasília.
Dubernet, T. and K. W. Axhausen (2015) Implementing a household joint activity-travel multi-agent simulation tool: first results. Transportation. v. 42. p. 753-769. DOI: 10.1007/s11116-015-9645-7.
Feitosa, Z. O. (2018) Modelo conceitual das Motivações Conscientes e Não Conscientes do comportamento de uso do automóvel com base na Teoria do Comportamento Planejado-TCP. Tese de Doutorado. Departamento de Engenharia Civil e Ambiental. Universidade de Brasília. Brasília-DF. 192 p. HYPERLINK: repositorio.unb.br/handle/10482/32200
Feygin, S. and A. Pozdnoukhov (2018) Peer pressure enables actuation of mobility lifestyles. Transportation Research Part C: Emerging Technologies. v. 87. p 26-45. DOI: 10.1016/j.trc.2017.12.008.
Field, A. (2018) Discovering Statistics Using IBM SPSS (5th Edition). Sage Publication.
Hackney, J. and F. Marchal, (2011) A coupled multi-agent microsimulation of social interactions and transportation behavior. Transportation Research Part A: Policy and Practice. v.45. p. 296-309. DOI: 10.1016/j.tra.2011.01.009.
Han, Q.; T. Arentze; H. Timmermans; D. Janssens and G. Wets (2011) The effects of social networks on choice set dynamics: Results of numerical simulations using an agent-based approach. Transportation Research Part A: Policy and Practice. v. 45 p. 310-322. DOI: 10.1016/j.tra.2011.01.008.
Haustein, S.; C. A. Klöckner and A. Blöbaum, (2009) Car use of young adults: The role of travel socialization. Transportation Research Part F: Traffic Psychology and Behaviour. v. 2. p 91-114. DOI: 10.1016/j.trf.2008.10.003.
Heinen, E. (2016) Identity and travel behavior: A cross-sectional study on commute mode choice and intention to change. Transportation Research Part F: Traffic Psychology and Behaviour. v. 43. p. 238-253. DOI: 10.1016/j.trf.2016.10.016.
IBGE. (2017) Portal do Instituto Brasileiro de Geografia e Estatística. Acesso em 17 de dezembro de 2018, disponível em Cidades IBGE: https://cidades.ibge.gov.br/
Jatobá, S. U. (2017) Densidades Urbanas nas Regiões Administrativas do Distrito Federal. Fonte: Companhia de Planejamento do Distrito Federal (CODEPLAN): http://www.codeplan.df.gov.br/wp-content/uploads/2018/02/TD_22_Densidades_Urbanas_nas_Regi%C3%B5es_Administrativas_DF.pdf
Ji, Y.; Y. Liu; Q. Liu; B. He and Y. Cao (2018) How Household Roles Influence Individuals’ Travel Mode Choice under Intra-household Interactions? KSCE Journal of Civil Engineering, v. 22. p. 4635–4644. DOI: 10.1007/s12205-018-1821-9.
Kim, J.; S. Rasouli and H. J. P. Timmermans (2018) Social networks, social influence and activity-travel behavior: a review of models and empirical evidence. Transport Reviews. p. 499-525. DOI: 10.1080/01441647.2017.1351500.
Kim, J.; S. Rasouli and H. J. P. Timmermans (2017) Investigating heterogeneity in social influence by social distance in car-sharing decisions under uncertainty: A regret-minimizing hybrid choice model framework based on sequential stated adaptation experiments. Transportation Research Part C: Emerging Technologies. v. 85. p. 47-63. DOI: 10.1016/j.trc.2017.09.001.
Kormos, C.; R. Gifford and E. Brown (2015) The Influence of Descriptive Social Norm Information on Sustainable Transportation Behavior: A Field Experiment. Environment and Behavior. v. 47. p. 479-501. DOI: 10.1177/0013916513520416.
Kowald, M.; P. Van Den Berg; A. Frei; J. A. Carrasco; T. Arentze; K. Axhausen; H. J. P. Timmermans and B. Wellman (2013) Distance patterns of personal networks in four countries: A comparative study. Journal of Transport Geography. v. 31. p. 236-248. DOI: 10.1016/j.jtrangeo.2013.06.006.
Krueger, R.; A. Vij and T. H. Rashidi (2018) Normative beliefs and modality styles: a latent class and latent variable model of travel behavior. Transportation. v. 45. p. 789-852. DOI: 10.1007/s11116-016-9751-1.
Li, J. (2018) Residential and transit decisions: Insights from focus groups of neighborhoods around transit stations. Transport Policy. v. 63. p. 1-9. DOI: 10.1016/j.tranpol.2017.10.012.
Lin, T.; D. Wang and M. Zhou (2018) Residential relocation and changes in travel behavior: what is the role of social context change? Transportation Research Part A: Policy and Practice. v. 111. p. 360-374. DOI: 10.1016/j.tra.2018.03.015.
Long, J.; N. Harré and Q. D. Atkinson (2015) Social clustering in high school transportation choices. Journal of Environmental Psychology, v. 41. p. 155-165. DOI: 10.1016/j.jenvp.2015.01.001.
Maness, M.; C. Cirillo and E. R. Dugundji (2015) Generalized behavioral framework for choice models of social influence: Behavioral and data concerns in travel behavior. Journal of Transport Geography. v. 46. p. 137-150. DOI: 10.1016/j.jtrangeo.2015.06.005.
Marek, E. M. (2018) Social learning under the labelling effect: Exploring travellers’ behaviour in social dilemmas. Transportation Research Part F: Traffic Psychology and Behaviour. v. 58. p. 511-527. DOI: 10.1016/j.trf.2018.06.015.
Moore, J.; J. A. Carrasco and A. Tudela (2013) Exploring the links between personal networks, time use, and the spatial distribution of social contacts. Transportation. p. 773-788. DOI: 10.1007/s11116-013-9467-4.
Morrison, G. M. and C. L. Lawell (2016) Driving in force: The influence of workplace peers on commuting decisions on U.S. military bases. Journal of Economic Behavior and Organization. v. 125. p. 22-40. DOI: 10.1016/j.jebo.2016.01.010.
Mota, D. R. (2019) Modelagem Comportamental da influência social na escolha do modo de viagem. Dissertação de Mestrado. Universidade de Brasília. 154p. http://repositorio.unb.br/handle/10482/35284
Mota, D. R.; M. S. M. Takano and P. W. G. Taco (2014) A Method Using GIS Integrated Voronoi Diagrams for Commuter Rail Station Identification: A Case Study from Brasilia (Brazil). Procedia Social and Behavioral Sciences. v. 162. p. 477-486. DOI: 10.1016/j.sbspro.2014.12.229.
Okushima, M. (2015) Simulating social influences on sustainable mobility shifts for heterogeneous agents. Transportation. v. 42. p. 8827-855. DOI: 10.1007/s11116-015-9649-3.
Ortúzar, J. D. and L. Willumsen (2008) Modelos de Transporte. PUbliCan, Ediciones de la Universidad de Cantabria. Santander.
Paiva, M. (2013) Fatores que influenciam no uso da bicicleta de forma integrada com o metrô. Tese de Doutorado. Departamento de Engenharia Civil e Ambiental, Universidade de Brasília. Brasília-DF. 206.
Pike, S. C. (2014) Travel Mode Choice and Social and Spatial Reference Groups. Transportation Research Record: Journal of the Transportation Research Board. v. 2412. DOI: 10.3141/2412-09.
Pike, S. C. (2015) Social Networks and Travel Behavior: An Investigation into the Role of Social Influence in the Transportation Mode Choices of Students. Research Report. Davis: Institute of Transportation Studies, University of California. Davis. 87p.
Pike, S. C. and M. Lubell (2016) Geography and social networks in transportation mode choice. Journal of Transport Geography. v. 57. p. 184-193. DOI: 10.1016/j.jtrangeo.2016.10.009.
Pike, S. C. and M. Lubell (2018) The conditional effects of social influence in transportation mode choice. Research in Transportation Economics. v. 68. p 2-10. DOI: 10.1016/j.retrec.2018.05.010.
Ronald, N. A.; T. A. Arentze; and H. Timmermans (2012) Modeling social interactions between individuals for joint activity scheduling. Transportation Research Part B: Methodological. v. 46. p. 276-290. DOI: 10.1016/j.trb.2011.10.003.
Sherwin, H.; K. Chatterjee and J. Jain (2014) An exploration of the importance of social influence on the decision to start bicycling in England. Transportation Research Part A Policy and Practice. v. 68. p. 32-45. DOI: 10.1016/j.tra.2014.05.001.
Shin, E. J. (2017) Ethnic neighborhoods, social networks, and inter-household carpooling: A comparison across ethnic minority groups. Journal of Transport Geography. v. 59. p. 14-26. DOI: 10.1016/j.jtrangeo.2017.01.002.
Silva, A. H. (2013) Influência do estilo de vida nas escolhas de transporte: uma análise de classes latentes. Tese de Dourado. Departamento de Engenharia Civil e Ambiental. Universidade de Brasília. Brasília. 216p. http://repositorio.unb.br/handle/10482/14489
Silveira, A. F. (2013) Rumo à Mobilidade Sustentável no Campus da UnB: Carona Solidária. Monografia de Projeto Final de Graduação. Brasília: Departamento de Engenharia Civil e Ambiental, Universidade de Brasília. 77p.
Silveira, A. F.; P. W. G. Taco and Seabra, L. O. (2014) Uso compartilhado do automóvel: uma análise comportamental dos frequentadores dos Campi da Universidade de Brasília - Brasil. In: Anais do 6º Congresso Luso-Brasileiro para Planeamento Urbano, Regional, Integrado e Sustentável - PLURIS, Lisboa, p. 1198-1209.
Sunitiyoso, Y.; E. Avineri and K. Chatterjee (2011) The effect of social interactions on travel behavior: An exploratory study using a laboratory experiment. Transportation Research Part A: Policy and Practice v. 45. p. 332-344. DOI: 10.1016/j.tra.2011.01.005.
Taco, P. W. G.; M. B. Silva; H. M. Faria; P. V. Medeiros; B. A. Macêdo and L. M. Taco (2016) O empreendedorismo na Mobilidade Urbana Sustentável: o Carona Phone. Anais do XXX Congresso Nacional de Pesquisa em Transportes da ANPET. Rio de Janeiro.
Takano, M. S. M. (2018) Metodologia para análise dos efeitos dos Estágios no Ciclo de Vida no Comportamento de Viagem. Departamento de Engenharia Civil e Ambiental, Universidade de Brasília. Tese de Doutorado. Departamento de Engenharia Civil e Ambiental, Universidade de Brasília. Brasília. 128p. http://repositorio.unb.br/handle/10482/34217
Takano, M. S. M. (2010) Análise da Influência da Forma Urbana do Comportamento de Viagens Encadeadas com base em padrões de atividades. Dissertação de Mestrado. Departamento de Engenharia Civil e Ambiental. Universidade de Brasília. 2019p. http://repositorio.unb.br/handle/10482/6960
Van Den Berg, P.; T. Arentze and H. Timmermans (2013) A path analysis of social networks, telecommunication and social activity-travel patterns. Transportation Research Part C: Emerging Technologies. v. 26. p 256-268. DOI: 10.1016/j.trc.2012.10.002.
Vinayak, P.; F. F. Dias; S. Astroza; C. R. Bhat; R. M. Pendyala and V. M. Garikapati (2018) Accepted Manuscript Accounting for multi-dimensional dependencies among decision-makers within a generalized model framework: An application to understanding shared mobility service usage levels. Transport Policy. 8p. DOI: 10.1016/j.tranpol.2018.09.013.
Wang, C.; G. Akar and J. M. Guldmann (2015) Do your neighbors affect your bicycling choice? A spatial probit model for bicycling to The Ohio State University. Journal of Transport Geography. v. 42. 122-130. DOI: 10.1016/j.jtrangeo.2014.12.003.
Wasserman, S. and K. Faust (2009) Social Network Analysis: Methods and Applications (19 ed.). Cambridge University Press. Nova York.
Wei, A. (2018) Results of the 2017-18 Campus Travel Survey. Research Report. Institute of Transportation Studies. University of California. Davis:
Xiao, Y. and H. K. Lo (2016) Day-to-day departure time modeling under social network influence. Transportation Research Part B: Methodological. v 92. p. 54-72. DOI: 10.1016/j.trb.2016.05.006.
Downloads
Published
How to Cite
Issue
Section
License
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.