A method for estimating pedestrian critical gap using microsimulation

Authors

  • Talyson Pereira Pereira Bandeira Universidade Federal do Ceará, Ceará – Brasil
  • Lisel Expósito Martín Universidade Federal do Ceará, Ceará – Brasil
  • Manoel Mendonça de Castro Neto Universidade Federal do Ceará, Ceará – Brasil

DOI:

https://doi.org/10.14295/transportes.v29i1.2240

Keywords:

Pedestrian delay, Signalized crossings, Pedestrian gap acceptance, Viswalk

Abstract

Estimating critical gap is crucial for modelling pedestrian level of service at crossings. Critical gap modelling becomes more challenging in signalized crossings because the proportion of pedestrians seeking gaps during red is usually unknown. Besides, the willingness – or lack of it – to cross during red signal indication varies by pedestrian and local characteristics, which makes gap acceptance modelling even more challenging. The main objective of this study is to propose a method for estimating pedestrian critical gap at signalized crossings using Vissim. The method considers that all pedestrians seek for gaps on red, and the critical gap parameter is calibrated for each pedestrian type having delay as calibration target. The results showed MAPE values of 2% and 9% for the two studied crossings. This method was compared to three existing methods of critical gap estimation. The results showed that the proposed method yielded the best estimations of delay, followed by the HCM’s.

Downloads

Download data is not yet available.

References

Brosseau, M.; S. Zangenehpour; N. Saunier e L. Miranda-Moreno (2013) The impact of waiting time and other factors on dangerous pedestrian crossings and violations at signalized intersections: A case study in Montreal. Transportation Research Part F: Traffic Psychology and Behaviour, v. 21, p. 159–172. DOI:10.1016/j.trf.2013.09.010

Chandra, S.; R. Rastogi e V. R. Das (2014) Descriptive and parametric analysis of pedestrian gap acceptance in mixed traffic conditions. KSCE Journal of Civil Engineering, v. 18, n. 1, p. 284–293. DOI:10.1007/s12205-014-0363-z

Dommes, A.; M. A. Granié; M. S. Cloutier; C. Coquelet e F. Huguenin-Richard (2015) Red light violations by adult pedestrians and other safety-related behaviors at signalized crosswalks. Accident Analysis and Prevention, v. 80, p. 67–75. DOI:10.1016/j.aap.2015.04.002

Fitzpatrick, K. (1991) Gaps accepted at stop-controlled intersections. Transportation Research Record, vol. 1303, p. 103–112. Disponível em: <http://pubsindex.trb.org/view.aspx?id=359881>. (Acesso em 26/04/2021).

Friis, C. e L. Svensson (2013) Pedestrian Microsimulation. A comparative study between the software programs Vissim and Viswalk. Dissertação (mestrado). Master's Programme Infrastructure and Environmental Engineering. Chalmers University of Technology, Göteborg, Suíça.

Guo, H.; Z. Gao; X. Yang e X. Jiang (2011) Modeling pedestrian violation behavior at signalized crosswalks in China: A hazards-based duration approach. Traffic Injury Prevention, v. 12, n. 1, p. 96–103. DOI:10.1080/15389588.2010.518652

Helbing, D. e P. Molnar (1995) Social force model for pedestrian dynamics. Physical review E. DOI:10.1103/PhysRevE.51.4282

Koh, P. P. e Y. D. Wong (2014) Gap acceptance of violators at signalised pedestrian crossings. Accident Analysis and Prevention, v. 62, p. 178–185. DOI:10.1016/j.aap.2013.09.020

Marisamynathan, S. e P. Vedagiri (2017) Modeling Pedestrian Level of Service at Signalized Intersection Under Mixed Traffic Conditions. Transportation Research Record, v. 2634, p. 86–94. DOI:10.3141/2634-13

Martín, L. E. (2018) Proposta metodológica para modelagem microscópica de interseções semaforizadas multimodais. Tese (doutorado). Universidade Federal do Ceará - UFC, Fortaleza.

Onelcin, P. e Y. Alver (2017) The crossing speed and safety margin of pedestrians at signalized intersections. Transportation Research Procedia, v. 22, p. 3–12. DOI:10.1016/j.trpro.2017.03.002

Pawar, D. S. e G. R. Patil (2015) Pedestrian temporal and spatial gap acceptance at mid-block street crossing in developing world. Journal of Safety Research, v. 52, p. 39–46. DOI:10.1016/j.jsr.2014.12.006

Pawar, D. S. e G. R. Patil (2016) Critical gap estimation for pedestrians at uncontrolled mid-block crossings on high-speed arterials. Safety Science, v. 86, p. 295–303. DOI:10.1016/j.ssci.2016.03.011

PTV. (2018) PTV VISSIM 11 User Manual. PTV AG, Karlsruhe, Alemanha.

Raff, M. S. e J. W. Hart (1950) A volume warrant for urban stop signs. Eno Foundation for Highway Traffic Control, Saugatuck, Connecticut. Disponível em: <http://trid.trb.org/view.aspx?id=118780>. (Acessado em 26/04/2021).

Ren, G.; Z. Zhou; W. Wang; Y. Zhang e W. Wang (2011) Crossing Behaviors of Pedestrians at Signalized Intersections. Transportation Research Record: Journal of the Transportation Research Board, v. 2264, p. 65–73. DOI:10.3141/2264-08

Rosenbloom, T. (2009) Crossing at a red light: Behaviour of individuals and groups. Transportation Research Part F: Traffic Psychology and Behaviour, v. 12, n. 5, p. 389–394. DOI:10.1016/j.trf.2009.05.002

Suh, W.; D. Henclewood; A. Greenwood; A. Guin; R. Guensler; M. P. Hunter e R. Fujimoto (2013) Modeling pedestrian crossing activities in an urban environment using microscopic traffic simulation. Simulation, v. n. 2, p. 213–224. DOI:10.1177/0037549712469843

Transportation Research Board (TRB) (2010) Highway Capacity Manual 2010 (HCM2010). Transportation Research Board, Washington, DC, Estados Unidos da América.

Virkler, M. (1998) Pedestrian Compliance Effects on Signal Delay. Transportation Research Record: Journal of the Transportation Research Board, v. 1636, p. 88–91. DOI:10.3141/1636-14

Ye, X.; J. Chen; G. Jiang e X. Yan (2015) Modeling Pedestrian Level of Service at Signalized Intersection Crosswalks Under Mixed Traffic Conditions. Transportation Research Record: Journal of the Transportation Research Board, v. 2512, p. 46–55. DOI:10.3141/2512-06

Downloads

Published

2021-04-30 — Updated on 2021-05-03

Versions

How to Cite

Pereira Bandeira, T. P., Expósito Martín, L., & Mendonça de Castro Neto, M. (2021). A method for estimating pedestrian critical gap using microsimulation. TRANSPORTES, 29(1), 132–147. https://doi.org/10.14295/transportes.v29i1.2240 (Original work published April 30, 2021)

Issue

Section

Artigos