An investigation of trip-chaining behaviour based on activity participation, socioeconomic variables and aggregated characteristics of modal alternatives

Authors

DOI:

https://doi.org/10.14295/transportes.v29i1.2302

Keywords:

Trip-Chaining, Activity-based approach, Revealed Preference Survey, CART algorithm

Abstract

This study investigates the individual trip-chaining behaviour for a sample of workers considering activity participation and socioeconomic characteristics. It proposes the inclusion of aggregated travel mode characteristics obtained from the Classification and Regression Tree (CART) algorithm and Origin-Destination (OD) Survey (Revealed Preference data RP) using data from São Paulo city, collected in 2007. Specifically, it proposes to: (1) classify individuals into clusters that have similar trip-chaining patterns; (2) perform a characterisation of modal alternatives from RP data; (3) propose an auxiliary criterion for formulating the Multinomial Logit model and reducing the number of parameters to be estimated; and (4) measure the improvement of estimates by including alternative characteristics (average travel times). Thus, this paper is associated with the following research gaps (1) the absence of data, associated to alternatives in an RP survey; (2) the lack of a criterion for utility function composition for the case of a large set choices; and (3) modelling based on the activity-based approach. Taking into account the findings, the feasibility of the proposed methodological procedure was verified  despite of the technique constraints. Additionally, the model improved by including the alternative variables and corroborated relationships based on the literature.

Downloads

Download data is not yet available.

References

Assirati, L. and Pitombo, C.S. (2019) Classificação de indivíduos segundo comportamento individual relativo a viagens a partir de dados em painel obtidos por smartphones. Transportes (Rio de Janeiro), v. 27, p. 165-181. DOI: 10.14295/transportes.v27i2.1679.

Bajwa, S.; Bekhor, S.; Kuwahara, M. and Chung, E. (2008) Discrete choice modeling of combined mode and departure time. 11th International Conference on Travel Behaviour Research. August, Kyoto. DOI: 10.1080/18128600808685681.

Barff, R.; Mackay, D. and Olshavsky, R. W. (1982) A selective review of travel-mode choice models. Journal of Consumer Re-search, v. 8, p. 370–380. DOI: 10.1086/208877.

Ben-Akiva, M. and Bierlaire, M. (2003) Discrete choice models with applications to departure time and route choice. The Handbook of Transportation Science, v. 2, p. 7‐38. DOI: 10.1007/0-306-48058-1_2.

Ben-Akiva, M.E. and J.L. Bowman (1995) Activity-based disaggregate travel demand model system with daily activity sched-ules, EIRASS Conference on Activity-Based Approaches: Activity Scheduling and the Analysis of Activity patterns, Eindhoven, The Netherlands.

Ben-Akiva, M. and Lerman, S. R. (1985) Discrete Choice Analysis: Theory and Application to Travel Demand, Cambridge, MA: MIT Press.

Bhat, C. (1995) A heteroskedastic extreme value model of intercity travel mode choice. Transportation Research B, v. 29, p. 471-483. DOI: 10.1016/0191-2615(95)00015-6.

Bhat, C. R. and Koppelman, F. S. (1991) A Conceptual Framework of Individual Activity Program Generation. Transportation Research, Part A, v. 27, n.6, p. 433-446. DOI: 10.1016/0965-8564(93)90050-U.

Bhat, C.R. and Koppelman, F.S. (1999) Activity-Based Modeling of Travel Demand. Handbook of Transportaton Science, vol 23. Springer, Boston, MA. DOI: 10.1007/978-1-4615-5203-1_3.

Bierlaire, M. (2018) Pandas Biogeme: a short introduction. technical report. TRANSP-OR 181219. Transport and Mobility La-boratory, ENAC, EPFL.

Bifulco, G. N.; Cartenì, A. and Papola, A. (2010) An activity-based approach for complex travel behavior modeling. European Transport Research Review, v. 2 (4), p. 209–221.

Blumenberg, E. and Pierce, G. (2014) Multimodal travel and the poor: Evidence from the 2009 National Household Travel Survey, Transportation Letters, v. 6, p. 36-45. DOI: 10.1179/1942787513Y.0000000009.

Bordley, R. (2013) Discrete choice with large choice sets. Economics Letters, v. 118, p. 13-15. DOI: 10.1016/j.econlet.2012.05.010.

Bradley, M.; Bowman, J. L., and Griesenbeck, B. (2010) SACSIM: Na applied activity-based model system with fine-level spatial and temporal resolution, Journal of Choice Modelling, v. 3, n. 1, p. 5–31. DOI: 10.1016/S1755-5345(13)70027-7.

Breiman, L.; Friedman, J. H; Olshen, R.A. and Stone, C. J. (1984) Classification and Regression Trees. Wadsworth International Group, Belmont, CA.

Caldas, M. U. C.; Favero, R. and Pitombo, C. S. (2019) Uso de redes neurais artificiais para abordagem desagregada de distri-buição de viagens urbanas com dados de preferência revelada. In: 33o Congresso da Associação Nacional de Pesquisa e En-sino em Transportes, Balneário Camboriú. Anais do 33o Congresso da Anpet, p. 2748-2749.

Cerveira, C. F.; Gomes, V. A. and Pitombo, C.S. (2018) Proposta de critério para caracterização agregada das alternativas mo-dais a partir de dados de preferência revelada. Anais do XXXII Congresso da ANPET, Gramado, RS, p. 2449-2510

Chapin, F.S. (1971) Free-time activities and the quality of urban life, Journal of the American Institute of Planners, 37, p. 411–417. DOI: 10.1080/01944367108977391.

Chen, L. and Duann, W. Hu. (2005) The estimation of discrete choice models with large choice-set. Journal of the Eastern Asia Society for Transportation Studies, v. 6, p. 1724-1739

Cullen, I. and V. Godson (1975) Urban networks: the structure of activity patterns, Progress in Planning, v. 4, p. 1–96. DOI: 10.1016/0305-9006(75)90006-9.

Ettema, D. (1996) Activity-based travel demand modeling. Eindhoven. 280p. Tese (Doutorado em Planejamento Urbano), Universidade de Eindhoven, Holanda.

Fezzi, C.; S. Ferrini, and I. J. Bateman, (2014) Using revealed preferences to estimate the value of travel time to recreation sites. Journal of Environmental Economics and Management, v. 67, n. 1, p. 58–70. DOI: 10.1016/j.jeem.2013.10.003.

Frejinger, E.; M. Bierlaire and M. Ben-Akiva (2009) Sampling of Alternatives for Route Choice Modeling. Transportation Re-search Part B, 43, p. 984-994. DOI: 10.1016/j.trb.2009.03.001.

Gordon, P.; Kumar, A. and Richardson, H. (1989) Gender differences in metropolitan travel behavior, Regional Studies v. 23, p. 499–510. DOI: 10.1080/00343408912331345672.

Hägerstrand, T. (1970) What about people in regional science? Papers of the Regional Science Association, 24(1), p. 7–21. DOI: 10.1111/j.1435-5597.1970.tb01464.x.

Hao, J.; Hatzopoulou, M. and Miller, E. (2010) Integrating an activity-based travel demand model with dynamic traffic as-signment and emission models. Transportation Research Record: Journal of the Transportation Research Board, v. 2176, n. 1, p. 1–13. DOI: 10.3141/2176-01.

Hartgen, D. T. (1974) Attitudinal and situational variables influencing mode choice: Some empirical findings. Transportation, v.4, p. 277-292. DOI: 10.1007/BF00167967.

IBM SPSS Inc. (2012) IBM SPSS Statistics 21 Algorithms. Chicago: Author

Ichikawa, S. M.; Pitombo, C. S. and Kawamoto, E. (2002) Aplicação de minerador de dados na obtenção de relações entre padrões de viagens encadeadas e características socioeconômicas. Panorama Nacional de Pesquisa em Transportes. XVI An-pet. v.2, p.175-186.

Jones, P. M. (1983) The Practical Application of Activity-based Approaches in Transport Planning: An Assessment. Recent Ad-vanced Travel Demand Analysis. Aldershot. England. Gower.

Jones. P.; Koppelman. F. and Orfueil. J. P. (1990) Activity analysis: State-of-the-art and future directions. Developmentes in Dynamic and Activity-Based Approaches to Travel Analysis, Gower Publishing, Brookfield, Vermont.

Kato, H.; T. Oda and Sakashita, A. (2013) Valuation of travel time saving with revealed preference data in Japan: Further Analysis. In 13th WCT. CPAPER, Rio de Janeiro, Brasil.

Kim, S. and Ulfarsson, G. (2004) Travel mode choice of the elderly – effects of personal, household, neighborhood, and trip characteristics. Transportation Research Record ,1894, p. 117–126. DOI: 10.3141/1894-13.

Kitamura, R. (1984) Incorporating Trip Chaining into Analysis of Destination Choice. Transportation Research B18, p. 67-81. DOI: 10.1016/0191-2615(84)90007-9.

Lemp, J. D. and Kockelman, K. M. (2012) Strategic sampling for large choice sets in estimation and application, Transportation Research Part A: Policy and Practice, p. 602-613. DOI: 10.1016/j.tra.2011.11.004.

Luce, R. D. and Suppes, P. (1965) Preference, utility, and subjective probability. In R. D. Lute, R. R. Bush, & E. Galanter (Fds.), Handbook of mathematical psychology, v. 111, p. 249-410.

Madan, D.B. and Groenhout, R. (1987) Modelling travel mode choices for the Sydney work trip, Journal of Transport Econom-ics and Policy, 21, p. 135-149.

McFadden, D. (1973) Conditional Logit Analysis of Qualitative Choice Behavior, in Frontiers of Econometrics, ed. by P. Zaremb-ka. New York: Academic Press.

McFadden, D. (1978) Modelling the choice of residential location. Transportation Research Record, v. 673, p. 72-77.

McGuckin, N. and Murakami, E. (1999) Examining trip-chaining behavior: Comparison of travel by men and women. Trans-portation Research Record: Journal of the Transportation Research Board, v.1693, p. 79–85. DOI: 10.3141/1693-12.

Nerella, S. and C. R. Bhat (2004) Numerical Analysis of Effect of Sampling of Alternatives in Discrete Choice Models. Transpor-tation Research Record, v. 1894, p. 11-19. DOI: 10.3141/1894-02.

Pinjari, A. R. and Bhat, C. R. (2011) Activity-based travel demand analysis, A Handbook Transport Economics, 1 ed., p. 1–36.

Pitombo, C. S.; E. Kawamoto and A. J. Soúsa (2011) An exploratory analysis of relationships between socioeconomic, land use, activity participation variables and travel patterns. Transport Policy, v.18, n.2, p. 347-357. DOI: 10.1016/j.tranpol.2010.10.010.

Primerano, F., M.A.P Taylor, L. Pitaksringkarn and P. Tisato (2008) Defining and understanding trip chaining behaviour. Transportation v. 35, p. 55–72. DOI: 10.1007/s11116-007-9134-8

Scheiner, J., Holz-Rau, C. (2017) Women’s complex daily lives: a gendered look at trip chaining and activity pattern entropy in Germany, Transportation, v. 44, p. 117–138. DOI: 10.1007/s11116-015-9627-9.

Shrewsbury, J. S. (2012) Calibration of trip distribution by generalised linear models. New Zealand Transport Agency Research Report 473. New Zealand.

Souza, H.H.H.; F.F.L.M. Sousa; F.M. Oliveira Neto; R.M.C. Freire and C.F.G. Loureiro (2017) Estimação do valor do tempo com base em pesquisas domiciliares de origem e destino: desafios teóricos e dificuldades práticas. Anais do XXXI Congresso da ANPET – Recife, PE.

Strathman J. G.; Dueker K. J. and Davis J. S. (1994) Effects of household structure and selected characteristics on trip chain-ing. Transportation v.21, p. 23-45. DOI: 10.1007/BF01119633.

Train, K. and McFadden, D. (1978) The Goods/Leisure Tradeoff and Disaggregate Work Trip Mode Choice Models, Transpor-tation Research, v.12, p. 349-353.

Downloads

Published

2021-04-30

How to Cite

Gomes, V. A. ., Caldas, M. U. de C., & Souza Pitombo, C. (2021). An investigation of trip-chaining behaviour based on activity participation, socioeconomic variables and aggregated characteristics of modal alternatives. TRANSPORTES, 29(1), 173–193. https://doi.org/10.14295/transportes.v29i1.2302

Issue

Section

Artigos