Calibration of the empirical fundamental relationship using very large databases

Authors

  • Juliana Mitsuyama Cardoso University of São Paulo, São Paulo – Brazil
  • Lucas Assirati São Carlos School of Engineering, São Paulo – Brazil
  • José Reynaldo Setti São Carlos School of Engineering, São Paulo – Brazil https://orcid.org/0000-0003-3738-5605

DOI:

https://doi.org/10.14295/transportes.v29i1.2317

Keywords:

Traffic flow models, very large databases, genetic algorithm., Model fitting

Abstract

This paper describes a procedure for fitting traffic stream models using very large traffic databases. The proposed approach consists of four steps: (1) an initial treatment to eliminate noisy, inaccurate data and to homogenize the information over the density range; (2) a first fitting of the model, based on the sum of squared orthogonal errors; (3) a second filter, to eliminate outliers that survived the initial data treatment; and (4) a second fitting of the model. The proposed approach was tested by fitting the Van Aerde traffic stream model to 104 thousand observations collected by a permanent traffic monitoring station on a freeway in the metropolitan region of São Paulo, Brazil. The model fitting used a genetic algorithm to search for the best values of the model parameters. The results demonstrate the effectiveness of the proposed approach.

Downloads

Download data is not yet available.

References

Arabas, J., Z. Michalewicz, & J. Mulawka (1994). GAVaPS-a genetic algorithm with varying population size. In Proc. of the 1st IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, p. 73–78. IEEE. DOI: 10.1109/icec.1994.350039

Balakrishna, R., C. Antoniou, M. Ben-Akiva, H. N. Koutsopoulos, & Y. Wen (2007) Calibration of Microscopic Traffic Simulation Models: Methods and Application. Transportation Research Record: Journal of Transportation Research Board, v. 1999, p. 198–207, DOI: 10.3141/1999-21

Cardoso, J. M., L. Assirati, & J. R. Setti (2019). Influência das condições meteorológicas na operação de rodovias de pista dupla paulistas. In Anais do XXXIII Congresso Nacional de Pesquisa em Transportes, Balneário Camboriú. ANPET.

Chambers, L. D. (2000). The Practical Handbook of Genetic Algorithms: Applications. Chapman and Hall/CRC. DOI: 10.1201/9781420035568

Coifman, B. (2014) Revisiting the empirical fundamental relationship, Transportation Research Part B: Methodological, v. 68, p. 173-184. DOI: 10.1016/j.trb.2014.06.005

Coley, D. A. (1999). An introduction to genetic algorithms for scientists and engineers. World Scientific Publishing Company. DOI: 10.1142/3904

Demarchi, S. H. (2003). Uma nova formulação para o modelo fluxo-velocidade-densidade de Van Aerde. In CNT/ANPET (Ed.), Transporte em Transformação – 7, p. 77–94. Brasilia, DF: LGE.

Dervisoglu, G., G. Gomes, J. Kwon, R. Horowitz, & P. Varaiya (2009). Automatic calibration of the fundamental diagram and empirical observations on capacity. Paper presented at the 88th Annual Meeting of the Transportation Research Board.

Diaz-Gomez, P. & D. Hougen (2007). Initial population for genetic algorithms: A metric approach. In Proc. of the 2007 Intl. Conference on Genetic and Evolutionary Methods, GEM 2007, Las Vegas, pp. 43–49.

Draper, N. & H. Smith (1980). Applied Regression Analysis (2nd. ed. ed.). New York: John Wiley & Sons. DOI: 10.2307/1267833

FGSV (2015). Handbuch für die Bemessung von Straßenverkehrsanlagen: HBS 2015 Forschungsgesellschaft für Straßen und verkehrswesen. Cologne: FGSV.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Boston: Addison-Wesley Longman.

Hall, F., V. F. Hurdle, & J. H. Banks (1992). Synthesis of recent work on the nature of speed-flow and flow-occupancy (or densi-ty) relationships on freeways. Transportation Research Record: Journal of Transportation Research Board v. 1365, p. 12–18.

Henclewood, D., W. Suh, M. O. Rodgers, & M. Hunter (2013) Statistical calibration for data-driven microscopic simulation model. Presented at 92nd Annual Meeting of the Transportation Research Board, Washington, D.C., 2013.

Hourdakis, J., P. G. Michalopoulos, & J. Kottommannil (2003) A Practical Procedure for Calibrating Microscopic Traffic Simula-tion Models. Transportation Research Record: Journal of Transportation Research Board, v. 1852, p. 130–139, DOI: 10.3141/1852-17.

Jha, M., G. Gopalan, A. Garms, B. P. Mahanti, T. Toledo & M. E. Ben-Akiva (2004) Development and calibration of a large-scale microscopic traffic simulation model. Transportation Research Record: Journal of Transportation Research Board, v. 1876, p. 121–131, DOI: 10.3141/1876-13

Karim, A. & H. Adeli (2002). Comparison of fuzzy-wavelet radial basis function neural network freeway incident detection model with California algorithm. Journal of Transportation Engineering, v. 128, n. 1, p. 21–30. DOI: 10.1061/(asce)0733-947x(2002)128:1(21)

Kerner, B. S. (2004). The Physics of Traffic – Empirical Freeway Pattern Features, Engineering Applications, and Theory. Berlin Heidelberg: Springer.

Knoop, V. L. & W. Daamen (2017). Automatic fitting procedure for the fundamental diagram. Transportmetrica B: Transport Dynamics, v. 5, n. 2, p. 129–144. DOI: 10.1080/21680566.2016. 1256239.

Knoop, V; S. P. Hoogendoorn & H. Van Zuylen (2009) Empirical differences between time mean speed and space mean speed. In: Traffic and Granular Flow ’07. Springer: Berlin, Heidelberg, p. 351–356, DOI: 10.1007/978-3-540-77074-9_36

Lee, J.-B. & K. Ozbay (2009) New calibration methodology for microscopic traffic simulation using enhanced simultaneous perturbation stochastic approximation approach. Transportation Research Record: Journal of the Transportation Research Board, v. 2124, p. 233–240, DOI: 10.3141/2124-23

Lu, S., Y. Jun, H. Mahmassani, G. Wenjun, & K. Bum-Jin (2010). Data mining-based adaptive regression for developing equilib-rium speed-density relationships. Canadian Journal of Civil Engineering, v. 37, n. 3, p. 389–400. DOI: 10.1139/L09-158

Ma, T., and B. Abdulhai (2002) Genetic Algorithm-Based Optimization Approach and Generic Tool for Calibrating Traffic Mi-croscopic Simulation Parameters. Transportation Research Record: Journal of Transportation Research Board, v. 1800, p. 6–15.

May, A. D. (1990). Traffic Flow Fundamentals. Upper Saddle River, NJ, USA: Prentice Hall.

Ni, D. (2016) Traffic Flow Theory: Characteristics, Experimental Methods, and Numerical Techniques. Oxford: Butterworth-Heinemann, p. 51–71. DOI: 10.1016/B978-0-12-804134-5.00004-0

Punzo, V., & M. Montanino (2016) Speed or spacing? Cumulative variables, and convolution of model errors and time in traffic flow models validation and calibration. Transportation Research Part B: Methodological, v.91, p. 21–33, DOI: 10.1016/j.trb.2016.04.012

Qin, X., & H. S. Mahmassani (2004) Adaptive calibration of dynamic speed-density relations for online network traffic estima-tion and prediction applications. Transportation Research Record: Journal of Transportation Research Board, v.1876, p. 82–89, DOI: 10.3141/1876-09

Qu, X., S. Wang, & J. Zhang (2015). On the fundamental diagram for freeway traffic: a novel calibration approach for single-regime models. Transportation Research Part B: Methodological, v. 73, p. 91–102. DOI: 10.1016/j.trb.2015.01.001

Rakha, H. (2009). Validation of Van Aerde’s simplified steadystate car-following and traffic stream model. Transportation Letters, v. 1, n. 3, p. 227–244. DOI:10.3328/TL.2009.01.03.227-244.

Rakha, H. & M. Arafeh (2010). Calibrating steady-state traffic stream and car-following models using loop detector data. Transportation Science, v. 44, n. 2, p. 151–168. DOI: 10.1287/trsc.1090.0297

Rakha, H. & B. Crowther (2003). Comparison and calibration of FRESIM and INTEGRATION steady-state car-following behav-ior. Transportation Research Part A: Policy and Practice, v. 37, n. 1, p. 1–27. DOI: 10.1016/s0965-8564(02)00003-4

Reeves, C. (1993) Using Genetic Algorithms with Small Populations. In: Proceedings of the Fifth International Conference on Genetic Algorithms (ICGA93), p. 92–99.

Sivanandam, S. N. & S. N. Deepa (2007). Introduction to Genetic Algorithms. Berlin: Springer. DOI: 10.1007/ 978-3-540-73190-0

Srinivas, M. & L. M. Patnaik (1994). Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, v. 24, n. 4, p. 656–667. DOI: 10.1109/21.286385

Storn, R. (1996). On the usage of differential evolution for function optimization. In Proceedings of North American Fuzzy Information Processing, p. 519–523. IEEE. DOI: 10.1109/nafips.1996.534789

Toledo, T., M. E. Ben-Akiva, D. Darda, M. Jha, & H. N. Koutsopoulos (2004) Calibration of Microscopic Traffic Simulation Models with Aggregate Data. Transportation Research Record: Journal of Transportation Research Board, v.1876, p. 10–19, DOI: 10.3141/1876-02.

Van Aerde, M. (1995). Single regime speed-flow-density relationship for congested and uncongested highways. Paper pre-sented at the 74th Annual Meeting of the Transportation Research Board, Washington, D.C. Paper No. 950802.

Van Aerde, M. & H. Rakha (1995). Multivariate calibration of single regime speed-flow-density relationships. In Pacific Rim TransTech Conference. 1995 Vehicle Navigation and Information Systems Conference Proceedings. 6th International VNIS, p. 334–341. IEEE. DOI: 10.1109/vnis.1995.518858

Wang, H., Jia Li, Qian-Yong Chen & Daiheng Ni (2011). Logistic modeling of the equilibrium speed–density relationship, Transportation Research Part A: Policy and Practice, v. 45, n. 6, p. 554–566. DOI: 10.1016 /j.tra.2011.03.010

Wu, N. (2002). A new approach for modeling of Fundamental Diagrams, Transportation Research Part A: Policy and Practice, v. 36, n. 10, p. 867–884. DOI: 10.1016/S0965-8564(01)00043-X.

Yang, H. & K. Ozbay (2011) Calibration of microsimulation models to account for safety and operation factors for traffic con-flict risk analysis. Presented at 3rd International Conference on Road Safety and Simulation, September 14–16, 2011, Indianapolis, Ind.

Zhang, M., J. Ma, S. P. Singh & L. Chu (2008) Developing calibration tools for microscopic traffic simulation Final Report Part III: Global calibration—O-D estimation, traffic signal enhancements, and a case study. UCB-ITS- PRR-2008-8. California PATH Research Report, June 2008.

Zhong, R., C. Chen, A. H. Chow, T. Pan, F. Yuan, & Z. He (2016). Automatic calibration of fundamental diagram for first-order macroscopic freeway traffic models. Journal of Advanced Transportation, v. 50, n. 3, p. 363–385. DOI: 10.1002/atr.1334

Downloads

Published

2021-04-30

How to Cite

Mitsuyama Cardoso, J., Assirati, L., & Setti, J. R. (2021). Calibration of the empirical fundamental relationship using very large databases. TRANSPORTES, 29(1), 212–228. https://doi.org/10.14295/transportes.v29i1.2317

Issue

Section

Artigos