Numerical simulation of geogrid reinforced flexible pavements
DOI:
https://doi.org/10.14295/transportes.v29i1.2366Keywords:
Geogrid, Reinforcement, Flexible pavement, Permanent deformationAbstract
This paper aims to develop a mechanistic analysis methodology in finite elements, using the ABAQUS program, to investigate the influence of geogrids as a reinforcement element in the performance of flexible pavements. To do this, an analytical methodology was adopted to calculate the additional confining stress provided by the reinforcement. The behavior of the base and subgrade materials was considered non-linear through a writing Fortran routine. An interface element between the geogrid and geotechnical material was also considered. The value of permanent deformation modeled numerically was compared with experimental results, which shows that the adopted methodology had a satisfactory fit. Thereby, different pavement configurations were simulated and analyzed. The parametric results show that by inserting a geogrid as an element to improve the pavement mechanical response, mainly due to the reduction of vertical stresses in the reinforcement layer and, consequently, the permanent deformation helps to prolong the paving service life.
Downloads
References
ABAQUS (2014) Getting Started with ABAQUS, Keywords Edition 14, 2014. Disponı́vel em http://abaqus.software.polimi.it/v6.14/books/gsk/default.htm (acesso em 20/09/2019)
Abu-Farsakh, M. Y., Gu, J., Voyiadjis, G., Z., and Chen, Q. (2014). Mechanistic-empirical analysis of the results of finite element analysis on flexible pavement with geogrid base reinforcement. International Journal of Pavement Engineering, 15(9), 786-798. DOI: 10.1080/10298436.2014.893315.
Al-Qadi, I. L.; S. H. Dessouky; J. Kwon; e E. Tutumluer (2012) Geogrid-reinforced low-volume flexible pavements: pavement response and geogrid optimal location. Journal of Transportation Engineering, Nº138, p. 1083-1090. DOI: 10.1061/(ASCE)TE.1943-5436.0000409.
Barksdale, R. D (1972). Laboratory Evaluation of Rutting in Base Course Materials. In: International Conference on Structural Design of Asphalt Pavements, 3. Proceedings, London, pp. 161-174.
Bernucci, L. B.; L. M. G. Motta; J. A. P. Ceratti e J. B. Soares (2006) Pavimentação asfáltica: formação básica para engenheiros. Rio de Janeiro: PETROBRAS: ABEDA. p.504.
Chen, Q., Abu-Farsakh, M., Voyiadjis, G. Z., & Souci, G. (2013). Shakedown analysis of geogrid-reinforced granular base materi-al. Journal of Materials in Civil Engineering, 25(3), 337–346. DOI: 10.1061/(ASCE)MT.1943-5533.0000601
Costa, R.; R. Motta; J. Pires; P. Moraes; E. Moura; L. B. Bernucci e E. Mencher (2017) Avaliação estrutural in situ de uma via férrea reforçada com geogrelha. Anais do XXXI Congresso Nacional de Pesquisa em Transportes, ANPET, Recife, v. 1, p. 1098–1109.
DEPARTAMENTO DE ESTRADAS DE RODAGEM DO ESTADO DE SÃO PAULO. Instrução de projeto de pavimentação. IP-DE-P00/001. São Paulo, 2006. 53 p.
Franco, F. A. C. P. (2007). Método de dimensionamento mecanístico-empírico de pavimentos asfálticos – SisPav. Tese de Dou-torado. COPPE/UFRJ, Rio de Janeiro, RJ, Brasil.
Franco, F. A. C. P. (2019). MeDiNa – Método de Dimensionamento Nacional. Manual de Utilização. Versão 1.1.3.0 Rio de Janei-ro.
Gu, F.; X. Luo; R. Luo; R. L. Lytton; E. Y. Hajj; e R. V. Siddharthan (2016) Numerical modeling of geogrid-reinforced flexible pavement and corresponding validation using large-scale tank test. Construction and Building Materials. v. 122, p. 214-230. DOI: 10.1016/j.conbuildmat.2016.06.081
Guimarães, A. C. R. (2009). Um método mecanístico-empírico para a previsão da deformação permanente em solos tropicais constituintes de pavimentos. Tese de Doutorado. COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ.
Guimarães, A.C.R., Motta, M.G. e Castro, C.D. (2018) Permanent deformation parameters of fine – grained tropical soils. Road Materials and Pavement Design. Vol. 20, No. 7. 1664-1681. DOI: 10.1080/14680629.2018.1473283
Hjelmstad, K. D. e E. Taciroglu (2000) Analysis and implementation of resilient modulus models for granular solids. Journal of Engineering Mechanics, v. 126, p. 821-830. DOI: 10.1016/(ASCE)0733-9399(2000)126:8(821)
Huang, Y. H. (2004). Pavement Analysis and Design. 2nd ed. Upper Saddle River, New Jersey, USA: Pearson Education Inc., Prentice Hall and Education Inc.
Kakuda, F. M. (2010). Desenvolvimento e a utilização de um equipamento de grandes dimensões na análise do comporta-mento mecânico de uma seção de pavimento sob carregamento cíclico. Tese de Doutorado. USP/EESC, São Carlos, Brasil.
Kakuda, F. M.; A. B. Parreira e G. T. P. Fabbri (2011) Análise de um pavimento reforçado com geossintético a partir de resulta-dos de ensaio em equipamento de grandes dimensões. Revista Transportes, v. 19, p. 28-34. DOI: 10.14295/transportes.v19i2.532
Kwon, J.; E. Tutumluer; e M. Kim (2005) Development of a mechanistic model for geosynthetic-reinforced flexible pave-ments. Geosynthetics International, v. 12, p. 310-320. DOI: 10.1680/gein.2005.12.6.310
Marques, G. S. (2018) Avaliação da interação solo coesivo-geossintético por meio de ensaios de arrancamento monotônico e cíclico sob diferentes níveis de sucção e energia de compactação. Dissertação de Mestrado. Escola de Engenharia de São Carlos, Universidade de São Carlos, São Carlos, São Paulo, Brasil.
Nazzal, M. D., Abu-Farsakh, M. Y., and Mohammad, L. N. (2010). Implementation of a critical state two-surface model to evalu-ate the response of geosynthetics reinforced pavements. International Journal of Geomechanics, 10(5), 202-212. DOI: 10.1061/(ASCE)GM.1943-5622.0000058
Perkins, S. W. e Ismeik, M. (1997) A synthesis and evaluation of geosynthetic-reinforced base course layers in flexible pave-ments. Geosynthetic International, v. 4, No. 6, pp. 549-621. DOI: 10.1680/gein.4.0106
Perkins, S. W. (2004). Development of design methods for geosynthetic- reinforced flexible pavements. DTFH61-01-X-00068, U.S. Department of Transportation, Federal Highway Administration, Wash- ington, DC.
Perkins, S. W.; B. R. Christopher; E. L. Cuelho; G.R. Eiksund; C. S. Schwartz e G. Svano (2009) A mechanistic-empirical model for base-reinforced flexible pavements. International Journal of Pavement Engineering, v. 10:2, p. 101-114. DOI: 10.1080/10298430802009646
Santos, A. G.; R. K. M. Assis e L. J. Fernandes Jr (2019) Efeito da aderência entre camadas na previsão de desempenho de pavimentos asfálticos. Revista Transportes, v. 27, p. 89-101. DOI: 10.14295/transportes.v27i2.1597
Schuettpelz, C., Fratta, D., & Edil, T. B. (2009). Evaluation of the Zone of Influence and Stiffness Improvement from Geogrid Reinforcement in Granular Materials. Transportation Research Record, 2116(1), 76–84. DOI: 10.3141/2116-11
Tang, X., Stoffels, S. M., & Palomino, A. M. (2013). Resilient and permanent deformation characteristics of unbound pavement layers modified by geogrids. Transportation Research Record, 2369, 3–10. DOI: 10.3141/2369-01
Tang, X., Stoffels, S. M., & Palomino, A. M. (2016). Mechanistic-empirical approach to characterizing permanent deformation of reinforced soft soil subgrade. Geotextiles and Geomembranes, 44(3), 429–441. DOI: 10.1016/j.geotexmem.2015.06.004
Uzan, J. (1988) Characterization of granular materials. Transportation Research Record. Transportation Research Boards, Washington, D.C., p. 52-59.
Vertematti, J. C. (2015) Manual brasileiro de geossintéticos. Editora – São Paulo: Bluncher. 2ª Edição, pp. 570.
Yang, X., & Han, J. (2013). Analytical model for resilient modulus and permanent deformation of geosynthetic-reinforced unbound granular material. Journal of Geotechnical and Geoenvironmental Engineering, 139(9), 1443–1453. DOI: 10.1061/(ASCE)GT.1943-5606.0000879
Yoder, E. J., e Witczak, M. W. (1975). Principles of pavement design. 2nd edition, John Wiley, and Sons, 711p.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Gabriel Orquizas Mattielo Pedroso, Jefferson Lins da Silva
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.