Preliminary assessment of resilience in urban mobility considering public transportation

Authors

  • Luiza Gagno Azolin Universidade de São Paulo Escola de Engenharia de São Carlos, São Paulo – Brasil https://orcid.org/0000-0001-8421-3211
  • Antônio Nélson Rodrigues da Silva Universidade de São Paulo Escola de Engenharia de São Carlos, São Paulo – Brasil

DOI:

https://doi.org/10.14295/transportes.v28i4.2406

Keywords:

Resilience. Urban mobility. Fuel crisis. Public transport.

Abstract

This study aims at introducing urban public transportation in a strategy for the evaluation of resilience in urban mobility in the case of an eventual fuel supply shortage. Different scenarios of public transport operation and maximum possible distances for walking and cycling are evaluated. The resulting trips are then classified as persistent, exceptional, adaptable or transformable, with the three first categories defined as resilient. Results of the application of the method in the city of São Carlos-SP showed that the introduction of even a single public transportation route could produce a considerable increase in resilience: 21.4% in the most pessimistic scenario for the active modes. This approach also allows the identification of the routes that do not add any additional demand coverage when put into operation, what would be a reason for not using those routes in the critical situation analyzed here.

Downloads

Download data is not yet available.

References

Beheshtian, A.; K. Donaghy; H. Gao; S. Safaie e R. Geddes (2018) Impacts and Implications of Climatic Extremes for Resilience Planning of Transportation Energy: A Case Study of New York City. Journal of Cleaner Production, v. 174, p. 1299-1313. DOI: 10.1016/j.jclepro.2017.11.039.

Berche, B.; C. Von Ferber; T. Holovatch e Y. Holovatch (2009) Resilience of Public Transport Networks Against Attacks. Euro-pean Physical Journal B, v. 71, n. 1, p. 125-137. DOI: 10.1140/epjb/e2009-00291-3.

Berdica, K. (2002) An Introduction to Road Vulnerability: What Has Been Done, Is Done and Should Be Done. Transport Policy, v. 9, n. 2, p. 117-127. DOI: 10.1016/S0967-070X(02)00011-2.

BP (2018) BP Energy Outlook 2018. Disponível em: <https://www.bp.com/content/dam/bp/en/ corporate/pdf/energy-economics/energy-outlook/bp-energy-outlook-2018.pdf>. Acesso em: 28 nov. 2018.

Chan, R. e J. L. Schofer (2016) Measuring Transportation System Resilience: Response of Rail Transit to Weather Disruptions. Natural Hazards Review, v. 17, n. 1. DOI: 10.1061/(ASCE)NH.1527-6996.0000200.

Cox, A.; F. Prager e A. Rose (2011) Transportation Security and the Role of Resilience: A Foundation for Operational Metrics. Transport Policy, v. 18, n. 2, p. 307-317. DOI: 10.1016/j.tranpol.2010.09.004.

Da Silva, B. L.; T.A. Sarmento; V. E. da S. Santos e F. B. R. Tavares (2019) Crise Petrolífera e o Descaso Ferroviário: Da Depen-dência ao Colapso. Revista da Universidade Vale do Rio Verde, v. 17, n. 1, p. 1-10. DOI: 10.5892/ruvrd.v17i1.5063.

D’Lima, M. e F. Medda (2015) A New Measure of Resilience: An Application to the London Underground. Transportation Research Part A: Policy and Practice, v. 81, p. 35-46. DOI: 10.1016/j.tra.2015.05.017.

Fernandes, V. A.; R. Rothfuss; V. Hochschild; W. R. da Silva e M. P. de S. Santos (2017) Resiliência da Mobilidade Urbana: Uma Proposta Conceitual e de Sistematização. Transportes, v. 25, n. 4, p. 147-160. DOI: 10.14295/transportes.v25i4.1079.

Folke, C.; S. R. Carpenter; B. Walker; M. Scheffer; T. Chapin e J. Rockström (2010) Resilience Thinking: Integrating Resilience, Adaptability and Transformability. Ecology and Society, v. 15, n. 4. Disponível em: <http://www.ecologyandsociety.org/vol15/iss4/art20>. Acesso em: 22 mar. 2019.

Gaitanidou, E.; M. Tsamib e E. Bekiaris (2017) A Review of Resilience Management Application Tools in the Transport Sector. Transportation Research Procedia, v. 24, p. 235-240. DOI: 10.1016/j.trpro.2017.05.113.

Holling, C. S. (1973) Resilience and Stability of Ecological Systems. Annual Review of Ecology and Systematics, v. 4, p. 1-23. DOI: 10.1146/annurev.es.04.110173.000245.

Holling, C. S. (1996) Engineering Resilience versus Ecological Resilience. Engineering within Ecological Constraints, n. 1996, p. 31-44. ISBN: 0-309-59647-5.

Jin, J. G.; L. C. Tang; L. Sun e D. H. Lee (2014) Enhancing Metro Network Resilience Via Localized Integration with Bus Services. Transportation Research Part E: Logistics and Transportation Review, v. 63, p. 17-30. DOI: 10.1016/j.tre.2014.01.002.

Krumdieck, S.; S. Page e A. Dantas (2010) Urban Form and Long-term Fuel Supply Decline: A Method to Investigate the Peak Oil Risks to Essential Activities. Transportation Research Part A: Policy and Practice, v. 44, n. 5, p. 306-322. DOI: 10.1016/j.tra.2010.02.002.

Leobons, C. M.; V. B. G. Campos e R. A. de M. Bandeira (2019) Assessing Urban Transportation Systems Resilience: A Proposal of Indicators. Transportation Research Procedia, v. 37, p. 322-329. DOI: 10.1016/j.trpro.2018.12.199.

Martins, M. C. M. e A. N. Rodrigues da Silva (2018) Uma Estratégia para Avaliação da Resiliência na Mobilidade Urbana. Transportes, v. 26, n. 3, p. 75-86. DOI: 10.14295/transportes.v26i3.1625.

Martins, M. C. M. e A. N. Rodrigues da Silva (2019) Estudo Hipotético para Avaliação Preliminar da Resiliência na Mobilidade Urbana. Ambiente Construído, v. 19, n. 1, p. 209-219. DOI: 10.1590/s1678-86212019000100302.

Martins, M. C. M.; A. N. Rodrigues da Silva e N. Pinto (2019) An Indicator-based Methodology for Assessing Resilience in Ur-ban Mobility. Transportation Research Part D: Transport and Environment, v. 77, p. 352-363. DOI: 10.1016/j.trd.2019.01.004.

Mehmood, A. (2016) Of Resilient Places: Planning for Urban Resilience. European Planning Studies, v. 24, n. 2, p. 407-419. DOI: 10.1080/09654313.2015.1082980.

Reggiani, A.; P. Nijkamp e D. Lanzi (2015) Transport Resilience and Vulnerability: The Role of Connectivity. Transportation Research Part A, v. 81, p. 4-15. DOI: 10.1016/j.tra.2014.12.012.

Rodrigues da Silva, A. N. (2008) Elaboração de um Banco de Dados de Viagem para Auxílio ao Desenvolvimento de Pesquisas na Área de Planejamento dos Transportes. Universidade de São Paulo, Escola de Engenharia de São Carlos, Relatório FAPESP, Processo No 04/15843-4.

Seeliger, L. e I. Turok (2013) Towards Sustainable Cities: Extending Resilience with Insights from Vulnerability and Transi-tion Theory. Sustainability (Switzerland), v. 5, n. 5, p. 2108-2128. DOI: 10.3390/su5052108.

Ta, C.; A. V. Goodchild e K. Pitera (2009) Structuring a Definition of Resilience for the Freight Transportation System. Trans-portation Research Record, v. 2097, n. 1, p. 19-25. DOI: 10.3141/2097-03.

Vale, D. (2020) Effective Accessibility: Using Effective Speed to Measure Accessibility By Cost. Transportation Research Part D: Transport and Environment, v. 80, p. e102263. DOI: 10.1016/j.trd.2020.102263.

Walker, B.; C. S. Holling; S. R. Carpenter e A. Kinzig (2004) Resilience, Adaptability and Transformability in Social-ecological Systems. Ecology and Society, v. 9, n. 2. Disponível em: <http://www.ecologyandsociety.org/vol9/iss2/art5/>. Acesso em: 22 mar. 2019.

Zhao, P. (2010) Sustainable Urban Expansion and Transportation in a Growing Megacity: Consequences of Urban Sprawl for Mobility on the Urban Fringe of Beijing. Habitat International, v. 34, n. 2, p. 236-243. DOI: 10.1016/j.habitatint.2009.09.008.

Published

2020-11-16

How to Cite

Azolin, L. G., & Rodrigues da Silva, A. N. (2020). Preliminary assessment of resilience in urban mobility considering public transportation. TRANSPORTES, 28(4), 76–88. https://doi.org/10.14295/transportes.v28i4.2406

Issue

Section

Artigos Vencedores do Prêmio ANPET Produção Científica