Verification of the IRI and BBI relationship in airport pavement roughness evaluation

Authors

DOI:

https://doi.org/10.14295/transportes.v30i1.2590

Keywords:

Roughness, Airport, International Roughness Index (IRI), Boeing Bump Index (BBI)

Abstract

Roughness on runways is often monitored through the International Roughness Index (IRI), developed for highway evaluation. In order to better address the particularities of airport pavements, a specific method for runways, the Boeing Bump Index (BBI), was developed. This study aims to verify the relationship between IRI and BBI, based on the parameters of average and critical value, obtained by ProFAA software, comparing
different approaches. In this paper, it was found that the highest correlations were
observed between the critical IRI and BBI. In addition, this correlation was greater in the analysis of the first third of the runway, with 58% of the runways presenting an R² higher than 0.70. Therefore, based on the analyzed dataset, it was verified that there is a significant correlation between the IRI and the BBI only when associated with the critical values.

Downloads

Download data is not yet available.

References

ANAC (2019) Regulamento Brasileiro da Aviação Civil (RBAC) no 153 Emenda no 04. Agência Nacional de Aviação Civil, Brasília, DF.

APR (2015) The Boeing Bump Index – Additional Methodologies Recommended. APR Consultants. 2015. Disponível em:<http://www.aprconsultants.com/Boeing-Bump- Index>. (Acesso em 20/08/2020).

ASTM (2003) E 1926-98 – Standard Practice for Computing International Roughness Index of Roads from Longitudinal Profile Measurements. American Society for Testing and Materials.

Barella, R. M. (2008) Contribuição para a avaliação da irregularidade longitudinal de pavimentos com perfilômetros inerciais. Tese (Doutorado), Escola Politécnica da Universidade de São Paulo, São Paulo - SP.

Boeing (2002) Document No. D6-81746: Runway Roughness Measurement, Quantification, and Application – The Boeing Method. Boeing Commercial Airport Group – Airport Technology Organization (B-B210), USA.

Cardoso, S. H. (2007) Talara airport runway rehabilitation optimization based on aircraft-pavement interaction. FAA World-wide Airport Technology Transfer Conference. Atlantic City, NJ, USA. DOI: 10.3141/2007-13.

Chen, Y. e Chou, C. (2004) Effects of Airport Pavement-Profile Wavelength on Aircraft Vertical Responses. Transportation Research Record, 1889, 83–93. DOI:10.3141/1889-10.

Durán, J. B. C. e Fernandes JR, J. L. (2020) Airport pavement roughness evaluation based on cockpit and center of gravity vertical accelerations. Revista Transportes, v. 28, n. 1, p. 147-159. DOI: 10.14295/transportes.v28i1.1932

Emery, S.; Hefer, A. e Horak (2015) E. Roughness of Runways and Significance of Appropriate Specifications and Measurement.

Conference on Asphalt Pavements for Southern Africa. Disponı́vel em: <https://www.researchgate.net/publication/281632183>. (Acesso em 12/04/2022).

ENAC (2015) Airport pavement management system – Linee guida sull implementazione del sistema di gestione della manuten-zione delle pavimentazioni. Número 003/2015-APT – Ed. n.1 Ente Nazionale per L'aviazione Civile.

FAA (2009) Advisory Circular AC 150/5380-9: Guidelines and Procedures for Measuring Airfield Pavement Roughness. Feder-al Aviation Administration. United States Department of Transportation. Washington, DC.

FAA (2013). Airport Pavement 10-Year R&D Program. Aviation Research Division. Airport Technology R&D Branch. Federal Aviation Administration Technical Center. Atlantic City, New Jersey, USA.

Hajek, J.; J.W. Hall e D. K. Hein (2011) Common Airport Pavement Maintenance Practices. Transportation Research Board, Washington, D.C. America.

Haynoe, G. F. (2016) Airport pavement rideability rating for maintenance evaluation. Airports Conference. Hershey, PA: Her-shey Lodge.

ICAO (2013) Annex 14: Aerodrome Design and Operations – Volume I. International Civil Aviation Organization. Canada.

Loprencipe, G. e Zoccali, P. (2017) Comparison of methods for evaluating airport pavement roughness. International Journal of Pavement Engineering, v. 20, n. 7, p. 782–791. DOI: 10.1080/10298436.2017.1345554.

Merighi, L. F. (2017) Avaliação funcional de Pavimentos Asfálticos Aeroportuários com a Finalidade de Estabelecer Metas para sua Manutenção. Dissertação (Mestrado). Escola de Engenharia de São Carlos da Universidade de São Paulo, São Paulo.

Saucedo, G. B. e Parra, R. M. (2007) Estrategias para optimizar el mantenimiento de los diferentes tipos de pavimentos utilizados en aeropuertos de México. Dissertação (Mestrado). Escuela Superior de Ingeniería Mecánica y Elétrica Unidad Profesional Ticoman, México. Disponível em: <https://tesis.ipn.mx/handle/123456789/11907>. (Acesso em 20/11/2020).

Sayers, M. W. e S. M. Karamihas (1998) The Little Book of Profiling: Basic Information about Measuring an Interpreting Road Profiles. University of Michigan.

Sayers, M. W.; T. Gillespie e C. Queiroz (1986) The International Road Roughness Experiment: A Basis for Establishing a Standard Scale for Road Roughness Measurements. Transportation Research Record 1084, Washington, D.C. pp. 76-85. Disponível em: <http://onlinepubs.trb.org/Onlinepubs/trr/1986/1084/1084-010.pdf> (Acesso em: 15/07/2020).

Transport Canada (2016) Measurement and evaluation of runway roughness. Civil Aviation, Standards. Advisory Circular AC 302-023.

Yadav, D. e Shukla, S. (2012) Analytical model for deflection of the runway pavement at touchdown point caused by an air-craft during landing. Int. J. Geomech., n.12, p. 113–118. DOI: 10.1061/(ASCE)GM.1943-5622.0000118.

Published

2022-04-26

How to Cite

da Silva Sousa, E. ., de Sousa Carneiro, R. ., & Lacerda de Oliveira, F. H. . (2022). Verification of the IRI and BBI relationship in airport pavement roughness evaluation. TRANSPORTES, 30(1), 2590. https://doi.org/10.14295/transportes.v30i1.2590

Issue

Section

Artigos