Synthetic population generation procedure based on Brazilian data

Authors

DOI:

https://doi.org/10.58922/transportes.v32i3.2617

Keywords:

Synthetic population. Synthetic population generators. Population synthesizers. Entropy maximization.

Abstract

This paper presents both a population synthesizer adapted to Brazil and its application to the Metropolitan Area of São Paulo (RMSP). Synthetic populations are used in disaggregate travel demand models; they result from estimating unknown information at a fine geographical level based on available aggregated information and (a sample) of microdata, both made available by the Census. Considering the theoretical approaches and the availability of codes, we selected PopulationSim, synthesizer, belonging to the category of synthetic reconstruction synthesizers. An extension, called PopulationSimBR, was developed to facilitate the use of this synthesizer in different regions of Brazil. OD survey data files were used in addition to Census data for the application to the RMSP. Validation metrics show that results compare favorably to those reported in the literature and suggest that PopulationSim can be used in Brazil, as well as the synthetic population generated for the RMSP.

Downloads

Download data is not yet available.

References

ActivitySim (2020) ActivitySim: An open platform for activity-based travel modeling. Disponível em: <https://activitysim.github. io/> (acesso em 13/06/2024).

Ajauskas, R. (2021a) Procedimento para geração de populações sintéticas com base em dados disponíveis no Brasil. Dissertação (mestrado). Universidade de São Paulo. São Paulo. DOI: 10.11606/D.3.2021.tde-04112021-120207. DOI: https://doi.org/10.11606/D.3.2021.tde-04112021-120207

Ajauskas, R. (2021b) Documentação PopulationSimBR: a extensão do PopulationSim para o Brasil. Disponível em: (acesso em 13/06/2024).

Ajauskas, R. e O. Strambi (2019) Procedimentos para geração de populações sintéticas aplicada à modelagem de transportes: uma revisão dos métodos de reconstrução sintética. In 33º Congresso de Pesquisa e Ensino em Transporte da ANPET. Balneário Camboriú: ANPET, p. 25–37.

Bar-Gera, H.; K.C. Konduri; B. Sana et al. (2009) Estimating survey weights with multiple constraints using entropy optimization methods. In 88th Annual Meeting of the Transportation Research Board, Washington D.C., Estados Unidos: Transportation Research Board, p. 09–1354.

Barthelemy, J. e P.L. Toint (2013) Synthetic population generation without a sample, Transportation Science, v. 47, n. 2, p. 266-79. DOI: 10.1287/trsc.1120.0408. DOI: https://doi.org/10.1287/trsc.1120.0408

Beckman, R.; K. Baggerly e M.D. McKay (1996) Creating synthetic baseline populations, Transportation Research Part A, Policy and Practice, v. 30, n. 6, p. 415-29. DOI: 10.1016/0965-8564(96)00004-3. DOI: https://doi.org/10.1016/0965-8564(96)00004-3

Birkin, M. e M. Clarke (1988) SYNTHESIS—a synthetic spatial information system for urban and regional analysis: methods and examples, Environment & Planning A, v. 20, n. 12, p. 1645-71. DOI: 10.1068/a201645. DOI: https://doi.org/10.1068/a201645

Farooq, B.; M. Bierlaire; R. Hurtubia et al. (2013) Simulation based population synthesis, Transportation Research Part B: Methodological, v. 58, p. 243-63. DOI: 10.1016/j.trb.2013.09.012. DOI: https://doi.org/10.1016/j.trb.2013.09.012

IBGE (2010) Censo 2010. Disponível em: <https://censo2010.ibge.gov.br/> (acesso em 13/06/2024).

Konduri, K.; D. You; V.M. Garikapati et al. (2016) Application of an enhanced population synthesis model that accommodates controls at multiple geographic resolutions. In Proceedings of the 95th Annual Meeting of the Transportation Research Board (Washington, DC, USA). Transportation Research Board, p. 10–14.

Lee, D. H.; Y. Fu (2011). Cross-entropy optimization model for population synthesis in activity-based microsimulation models. Transportation Research Record, v. 2255, n. 1, p. 20-27. DOI: https://doi.org/10.3141/2255-03

Lim, P.P. (2020) Population synthesis for travel demand modeling in Australian capital cities. Tese (doutorado). Institute for Social Science Research, University of Queensland, Queensland, DOI: 10.14264/uql.2020.822. DOI: https://doi.org/10.14264/uql.2020.822

MARG (2016) PopGen: Synthetic Population Generator. Mobility Analytics Research Group. Disponível em: <http://www.mobilityanalytics. org/popgen.html> (acesso em 13/06/2024).

Miyamoto, K.; N. Sugiki; N. Otani et al. (2010) Agent-based estimation method of household microdata for base year in land use microsimulation. In 89th TRB Meeting Compendium of Papers. Washington D.C.: Transportation Research Board.

Moreno, A. e R. Moeckel (2018) Population synthesis handling three geographical resolutions, ISPRS International Journal of Geo- Information, v. 7, n. 5, p. 174. DOI: 10.3390/ijgi7050174. DOI: https://doi.org/10.3390/ijgi7050174

Müller, K. (2017) A generalized approach to population synthesis. Tese (doutorado). ETH Zurich, Zurich. DOI: 10.3929/ethz-b-000171586.

Müller, K., e Axhausen, K. W. (2010) Population synthesis for microsimulation: state of the art. Arbeitsberichte Verkehrs-und Raumplanung, v. 638, p. 1-14.

Paul, B.M.; J. Doyle; B. Stabler et al. (2018) Multi-level population synthesis using entropy maximization-based simultaneous list balancing (No. 18-03886). In 97th Annual Meeting of the Transportation Research Board. Washington D.C.: Transportation Research Board.

Pianucci, M.N. (2016) Uma proposta para a obtenção da população sintética através de dados agregados para modelagem de geração de viagens por domicílio. Tese (Doutorado). Universidade de São Paulo, São Carlos. DOI: 10.11606/T.18.2016. tde-24102016-154347.

PopulationSim (2020) PopulationSim 0.5.1. Disponível em: <https://activitysim.github.io/populationsim/> (acesso em 31/07/2024)

Ramadan, O.E. e V.P. Sisiopiku (2019) A critical review on population synthesis for activity-and agent-based transportation models. In Transportation Systems Analysis and Assessment. IntechOpen. DOI: 10.5772/intechopen.86307. DOI: https://doi.org/10.5772/intechopen.86307

Ribeiro, R.A. (2011) Modelo baseado em agentes para estimar a geração e a distribuição de viagens intraurbanas. Tese (Doutorado). Universidade de São Paulo, São Carlos. DOI: 10.11606/T.18.2011.tde-31012012-081352 DOI: https://doi.org/10.11606/T.18.2011.tde-31012012-081352

RSG (2017) PopulationSim Specification. Disponível em: <https://activitysim.github.io/populationsim/docs.html>. (acesso em 13/06/2024).

Sallard, A.; Balać, M.; Hörl, S. (2020). A synthetic population for the greater São Paulo metropolitan region. Arbeitsberichte Verkehrs-und Raumplanung, v. 1545.

Smith, L., R. Beckman e K. Baggerly (1995) TRANSIMS: Transportation analysis and simulation system. New Mexico: Los Alamos National Lab. DOI: 10.2172/88648. DOI: https://doi.org/10.2172/88648

Sun, L.; A. Erath e C. Ming (2018) A hierarchical mixture modeling framework for population synthesis, Transportation Research Part B: Methodological, v. 114, p. 199. DOI: 10.1016/j.trb.2018.06.002. DOI: https://doi.org/10.1016/j.trb.2018.06.002

Voas, D. e P. Williamson (2000) An evaluation of the combinatorial optimisation approach to the creation of synthetic microdata, International Journal of Population Geography, v. 6, n. 5, p. 349-66. DOI: 10.1002/1099-1220(200009/10)6:5<349::AID-IJPG196>3.0.CO;2-5. DOI: https://doi.org/10.1002/1099-1220(200009/10)6:5<349::AID-IJPG196>3.0.CO;2-5

Vovsha, P.; J.E. Hicks; B.M. Paul et al. (2015) New features of population synthesis. In 94th Annual Meeting of the Transportation Research Board, Washington D.C., Estados Unidos: Transportation Research Board, p. 15–5343.

Ye, X.; K. Konduri; R.M. Pendyala et al. (2009) A methodology to match distributions of both household and person attributes in the generation of synthetic populations. In 88th Annual Meeting of the Transportation Research Board. Washington D.C., Estados Unidos: Transportation Research Board.

Published

2024-09-09

How to Cite

Ajauskas, R., & Strambi, O. (2024). Synthetic population generation procedure based on Brazilian data. TRANSPORTES, 32(3), e2617. https://doi.org/10.58922/transportes.v32i3.2617

Issue

Section

Artigos