Pedestrian route choice: GPS tracking, discrete models and the influence of the built environment in a central district in Brazil
DOI:
https://doi.org/10.14295/transportes.v30i1.2636Keywords:
Route choice, Discrete choice, Built environment, Travel on foot, Walkability, Active transportationAbstract
Encouraging active modes of travel through changes in urban form has been the object of research since motorized transport proved to be harmful to cities’ quality life. Travelling on foot became part of the sustainable urban mobility agenda, initially emphasizing the influence of the built environment on modal choice, aiming to increase it’s share. Recently, walkability studies have evolved to incorporate microscale aspects of the environment, seeking to understand what influences pedestrians’ route choice. This work investigates the factors that influence route choice by proposing a method based on GPS tracking of individuals and discrete choice modelling considering environmental variables. A study in the city of Porto Alegre estimated binary discrete models to understand why pedestrians choose routes other than the shortest path between origin and destination. Results show that road network attributes such as functional class and the length of the stretches as well as urban such as the presence of commercial uses, in association with trip purpose and individual factors, influence the perceived utility and the route choice.
Downloads
References
Adkins, A.; Dill, J.; Luhr, G.; Neal, M. (2012) Unpacking Walkability: Testing the Influence of Urban Design Features on Percep-tions of Walking Environment Attractiveness. Journal of Urban Design, v. 17, n. 4, p. 499–510. DOI: 10.1080/13574809.2012.706365.
Arellana, J.; Saltarín, M.; Larrañaga, A. M.; Alvarez, V.; Henao, C. A. (2020) Urban walkability considering pedestrians? percep-tions of the built environment: a 10-year review and a case study in a medium-sized city in Latin America. Transport Re-views, v. 40, p. 183-203. https://doi.org/10.1080/01441647.2019.1703842
Ben-Akiva M. E.; Ramming M. S.; Bekhor, S. (2004) Route Choice Models. In: Schreckenberg M.; Selten R. (eds.) Human Behav-iour and Traffic Networks. Springer: Berlin, Heidelberg.
Boarnet, M. G. e Crane, R. (2001) Travel by design: the influence of urban form on travel: the influence of urban form on travel. Oxford: Oxford University Press.
Boniardi, L., Dons, E., Campo, L., Van Poppel, M., Int Panis, L., e Fustinoni, S. (2019). Is a Land Use Regression Model Capable of Predicting the Cleanest Route to School? Environments, 6(8), 90. DOI: 10.3390/environments6080090
Campoli, J. (2012). Made for walking: density and neighbourhood form. Cambridge: Lincoln Institute of Land Policy.
Cao, X., Mokhtarian, P.L., Handy, S.L.: Examining the impacts of residential self-selection on travel behavior: a focus on empiri-cal findings. Transport Reviews 29(3), 359–395 (2009). DOI: 10.1080/01441 640802539195
Cervero, R. e Kockelman, K. (1997) Travel Demand and the 3Ds: Density, Diversity, and design. Transportation Research Part D: Transport and Environment, v.2, n.3, p.199-219. DOI: 10.1016/S1361-9209(97)00009-6
Cervero, R., Sarmiento, O. L., Jacoby, E., Gomez, L.F., e Neiman, A. (2009) Influences of built environments on walking and cy-cling: lessons from Bogotá. Int. J. Sustain. Transp. 3(4), 203–226 (2009). DOI: 10.1080/15568310802178314.
Ewing, R.; Cervero, R. (2001) Travel and the built environment: a synthesis. Transport. Res. Rec.: J. Transport. Res. Board 1780 (1), 87–114. DOI: 10.3141/1780-10.
Ewing, R., Cervero, R. (2010) Travel and the built environment: a meta-analysis. J. Am. Plan. Assoc. 76, 265– 294. DOI: 10.1080/01944361003766766.
Ewing, R.; Dumbaugh, E. (2009) The Built Environment and Traffic Safety A Review of Empirical Evidence. Journal of Plan-ning Literature, v. 23, n. 4, p. 347–367. DOI: 10.1177/0885412209335553
Foltete, J.C. e Piombini, A. (2010). Deviations in pedestrian itineraries in urban areas: a method to assess the role of envi-ronmental factors. Environment and Planning B: Planning and Design, v.37, n.4, p.723–739. DOI: 10.1068/b35015
Frank, L. D.; Sallis, J. F.; Conway, T. L.; Chapman, J. E.; Saelens, B. E.; Bachman, W. (2006) Many pathways from land use to health: associations between neighbourhood walkability and active transportation, body mass index, and air quality. Journal of the American Planning Association, v.72, n.1, p.75–87. DOI: 10.1080/01944360608976725
Frank, L. D., Sallis, J. F., Saelens, B. E., Leary, L., Cain, K., Conway, T. L., e Hess, P. M. (2010). The development of a walkability index: Application to the Neighbourhood Quality of Life Study. British Journal of Sports Medicine, 44(13), 924–933. DOI: 10.1136/bjsm.2009.058701
Frank, L. D., Appleyard, B. S., Ulmer, J. M., Chapman, J. E., & Fox, E. H. (2021). Comparing walkability methods: Creation of street smart walk score and efficacy of a code-based 3D walkability index. Journal of Transport & Health, 21, 101005. DOI: 10.1016/j.jth.2020.101005
Golledge, R. G. (1999). Wayfinding Behavior, Cognitive Mapping and Other Spatial Processes. Reginald G. Golledge, ed. The Johns Hopkins University Press, Baltimore & London, 1999. 428 p. DOI: 10.1046/j.1468-1331.2000.t01-1-00082.x
Guo, Z. (2009) Does the pedestrian environment affect the utility of walking? A case of path choice in downtown Boston. Transportation Research Part D: Transport and Environment, v. 14, n. 5, p. 343–352. DOI: 10.1016/j.trd.2009.03.007.
Guo, Z.; Loo, B. P. Y. (2013) Pedestrian environment and route choice: evidence from New York City and Hong Kong. Journal of Transport Geography, v. 28, p. 124–136. DOI: 10.1016/j.jtrangeo.2012.11.013.
Handy, S. L., Cao, X., e Mokhtarian, P. L. (2005). Correlation or causality between the built environment and travel behaviour? Evidence from Northern California. Transportation Research D, 10(6), 427–444. DOI: 10.1016/j.trd.2005.05.002
Hoogendoorn, S. P.; Bovy, P. H. L. (2004) Pedestrian route-choice and activity scheduling theory and models. Transportation Research Part B: Methodological, v. 38, n. 2, p. 169–190. DOI: 10.1016/S0191-2615(03)00007-9
Keyvanfar, A., Ferwati, M. S., Shafaghat, A., e Lamit, H. (2018). A path walkability assessment index model for evaluating and facilitating retail walking using decision-tree-making (DTM) method. Sustainability (Switzerland), 10(4), 1–33. DOI: 10.3390/su10041035
Kim, S., Park, S., e Lee, J. S. (2014). Meso-or micro-scale? Environmental factors influencing pedestrian satisfaction. Transpor-tation Research Part D: Transport and Environment, 30, 10–20. DOI: 10.1016/j.trd.2014.05.005
Larranaga, A.M., Arellana, J., Rizzi, L.I. Strambi, O.; Cybis, H. B. B. (2019) Using best–worst scaling to identify barriers to walka-bility: a study of Porto Alegre, Brazil. Transportation 46, 2347–2379. DOI: 10.1007/s11116-018-9944-x
Larranaga, A. M.; Arellana, J.; Rizzi, L. I.; Strambi, O.; Cybis, H. B. B. (2014). The influence of built environment and travel atti-tudes on walking: A case study of Porto Alegre, Brazil. International Journal of Sustainable Transportation, v. 10, p. 332-342. DOI: https://doi.org/10.1080/15568318.2014.933986
Lee, C., Moudon, A.V. (2006) Correlates of walking for transportation or recreation purposes. J. Phys. Act. Health 3(1), 77–98. DOI: 10.1123/jpah.3.s1.s77
Lee, S., Lee, C., Nam, J. W., Abbey-Lambertz, M., & Mendoza, J. A. (2020). School walkability index: Application of environmental audit tool and GIS. Journal of Transport & Health, 18, 100880. DOI: 10.1016/j.jth.2020.100880
Lima, A.; Stanojevic, B.; Papagiannaki, D.; Rodriguez, P.; González, M. C. (2016) Understanding individual routing behaviour. Journal of the Royal Society Interface v.13, no 116. DOI: 10.1098/rsif.2016.0021.
Liu, Y., Yang, D., Timmermans, H. J. P., & de Vries, B. (2020). The impact of the street-scale built environment on pedestrian metro station access/egress route choice. Transportation Research Part D: Transport and Environment, 87, 102491. DOI: 10.1016/j.trd.2020.102491
Lucchesi, S.; Larranaga, A. M.; Bettella Cybis, H. B.; Abreu e Silva, J. A. de; Arellana, J. A. (2021) Are people willing to pay more to live in a walking environment? A multigroup analysis of the impact of walkability on real estate values and their mod-eration effects in two Global South cities. Research in Transportation Economics, v. 86, p. 100976. DOI: 10.1016/j.retrec.2020.100976
Lucchesi, S.; Larranaga, A. M.; Ochoa, J. A. A.; Samios, A. A.B.; Cybis, H. B. B. (2020) The role of security and walkability in sub-jective wellbeing: a multigroup analysis among different age cohorts. Research in Transportation Business & Management, 2020. DOI: 10.1016/j.rtbm.2020.100559
Machado, R.; Nodari, C. T.; Larranaga, A.M. (2017) Fatores associados à ocorrência de acidentes no entorno de pontos de paradas de ônibus. In: Anais do XXXI Congresso de Pesquisa e Ensino em Transportes, 2017. XXXI ANPET Associação Nacio-nal de Pesquisa e Ensino em Transportes, 2017. Disponível em: http://146.164.5.73:30080/tempsite/anais/documentos/2017/Trafego%20Urbano%20e%20Rodoviario/Seguranca%20Viaria%20II/6_240_AC.pdf
Manaugh, K., & El-Geneidy, A. (2011). Validating walkability indices: How do different households respond to the walkability of their neighbourhood? Transportation research Part D: Transport and Environment, 16(4), 309‐315. DOI: 10.1016/j.trd.2011.01.009
McFadden, D. 1974. Conditional logit analysis of qualitative choice behaviour. In Frontiers in Econometrics, ed. P. Zarembka, New York: Academic Press, 105 n.42.
Mor, M., Oehrlein, J., Haunert, J.-H., & Dalyot, S. (2020). Whom to Follow? A Comparison of Walking Routes Computed Based on Social Media Photos from Different Types of Contributors. AGILE: GIScience Series, 1, 1–19. DOI: 10.5194/agile-giss-1-16-2020
Motter, V. ; Larranaga, A.M. ; Cybis, H.B. . Utilização de GPS no desenvolvimento de pesquisas de origem e destino. In: Anais do XXV Congresso de Pesquisa e Ensino em Transportes. Belo Horizonte. Panorama Nacional da Pesquisa em Transportes. Rio de Janeiro: ANPET, 2011.
Moudon, A. V.; Lee, C.; Cheadle, A. D.; Garvin, C., Johnson, D.; Schmidt, T. L.; Lin, L. (2006) Operational definitions of walkable neighbourhood: theoretical and empirical insights. Journal of Physical Activity e Health, v.3, s.1, p.S99-S117. DOI: 10.1123/jpah.3.s1.s99
Open Street Map. Open Street Map. Acessado em 12 de dezembro de 2013 de https://www.openstreetmap.org.
Quercia, D., Schifanella, R., & Aiello, L. M. (2014). The shortest path to happiness: Recommending beautiful, quiet, and happy routes in the city. 116–125. DOI: 10.1145/2631775.2631799
Ramming, M.S., 2002. Network Knowledge and Route Choice. Ph.D. Dissertation, Department of Civil and Environmental Engineering, MIT, Cambridge, MA. Disponível em: https://dspace.mit.edu/handle/1721.1/49797
Ribeiro, M. D. ; Larranaga, A.M. ; Arellana, J. ; Cybis, H.B. . Influence of GPS and self-reported data in travel demand models. In: XVIII Congresso Panamericano de Engenharia de Trânsito e Transporte e Logística (PANAM), 2014, Santander. XVIII Con-gresso Panamericano de Engenharia de Trânsito e Transporte e Logística (PANAM), 2014.
Ribeiro, M. D. ; Larranaga, A.M. ; Cybis, H.B. Erros e incertezas em pesquisas de origem e destino: Explorando o potencial da tecnologia GPS. In: XIII SEPROSUL - Semana de Engenharia de Produção Sul-Americana, 2013, Gramado-RS. XIII SEPRO-SUL - Semana de Engenharia de Produção Sul-Americana,. Porto Alegre: FEEng, 2013.
Ruiz-Padillo, A.; Pasqual, F. M.; Larranaga Uriarte, A. M.; Cybis, H. B. B. (2018) Application of multi-criteria decision analysis methods for assessing walkability: A case study in Porto Alegre, Brazil. Transportation Research Part D - Transport and En-vironment, v. 63, p. 855-871. DOI: 10.1016/j.trd.2018.07.016
Salazar Miranda, A., Fan, Z., Duarte, F. e Ratti, C. (2021). Desirable streets: Using deviations in pedestrian trajectories to measure the value of the built environment. Computers, Environment and Urban Systems, 86, 101563. DOI: 10.1016/j.compenvurbsys.2020.101563.
Sevtsuk, A., Basu, R., Li, X., e Kalvo, R. (2021). A big data approach to understanding pedestrian route choice preferences: Evidence from San Francisco. Travel Behaviour and Society, 25, 41–51. DOI: 10.1016/j.tbs.2021.05.010
Schlossberg, M.; Weinstein Agrawal, A.; Irvin, K. (2008). How far, by which route and why? A spatial analysis of pedestrian preference. Journal of urban design, v. 13, n. 1, p. 81–98. DOI: 10.1080/13574800701804074
Stopher, P., Kockelman, K., Greaves, S., Clifford, E. (2008), Reducing Burden and Sample Size in Multi-day Household travel survey. Transportation Research Board Annual Meeting 2008, Washington DC. DOI: 10.3141/2064-03
Taleai, M., & Yameqani, A. S. (2018). Integration of GIS, remote sensing and multi-criteria evaluation tools in the search for healthy walking paths. KSCE Journal of Civil Engineering, 22(1), 279–291. DOI: 10.1007/s12205-017-2538-x
Tian, G., Ewing, E. (2017) A walk trip generation model for Portland, OR. Transportation Research Part D - Transport and Envi-ronment, 1361–9209. DOI: 10.1016/j.trd.2017.03.017
Tribby, C.P., Miller, H.J., Brown, B.B., Werner, C.M., Smith, K.R. (2016) Assessing built environment walkability using activity-space summary measures. J. Transp. Land Use 9(1), 187–207. DOI: 10.5198/jtlu.2015.625
Torres, T. B.; Machado, R.; Larranaga, A.M. e Nodari, C. T. (2019) Contributing factors of built environment on severity of crashes involving motorcycles. In: Transportation Research Board Annual Meeting 2019, 2019, Washington D.C.. TRB 2019 Annual Meeting Proceedings, 2019.
Torres, T. B.; Larranaga, A.M.; Demore, C. P. e Nodari, C. T. (2017) Prevalência de fatores associados à severidade dos acidentes em entorno de escolas. TRANSPORTES (RIO DE JANEIRO), v. 25, p. 102, 2017. DOI: 10.14295/transportes.v25i3.1331.
Train, K. (2009) Discrete choice methods with simulation. 2ed. New York: Cambridge University Press.
Wasfi, R. A., Dasgupta, K., Orpana, H., e Ross, N. A. (2016). Neighbourhood Walkability and Body Mass Index Trajectories: Longitudinal Study of Canadians. American Journal of Public Health, 106(5), 934–940. DOI: 10.2105/AJPH.2016.303096
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Júlio Celso Borello Vargas, Ana Margarita Larranaga Uriarte, Helena Beatriz Bettella Cybis
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.