Laboratory investigation of soil-aggregate-cement mixture

Authors

DOI:

https://doi.org/10.14295/transportes.v30i3.2646

Keywords:

Soil-aggregate-cement, Cement-treated base, Portland cement, High early-strength cement

Abstract

Cement stabilization improves physical and mechanical properties of geotechnical materials. However, numerous combinations of geotechnical materials and cement hinder to establish a pattern of mechanical behavior of cement-stabilized materials. Thus, this study aims to evaluate the mechanical behavior of soil-aggregate-cement mixtures (SAC) using high early-strength cement (HE), to contribute to dosage aspects and to ascertain their recommendation as base and/or subbase layers in heavy and very heavy volume roads. For this, SAC mixtures composed of different proportions of soil and aggregate (20:80 and 30:70) with 3, 5 and 7% of cement were produced and cured at different times (0, 7 and 28 days). Mechanical properties were assessed in terms of unconfined compressive strength (UCS), indirect tensile strength (ITS) and resilient modulus by repeated load triaxial test ( ) and by dynamic indirect tensile test ( ). A cement dosage study compared compressive and tensile strengths with acting stresses computed by mechanistic analysis of hypothetical pavements. This same procedure was also used for verifying the possibility of anticipating construction phases and reducing the traffic opening time, in this case a SAC mixture using Portland composite cement (PCC) was also evaluated. Results indicated that SAC-20:80 presented better mechanical behavior than SAC-30:70. Also, the cement content that led to the best mechanical behavior was 5%. All SAC mixtures with 5% HE had higher strength than the acting stresses interval computed for hypothetical pavements. SAC mixtures reached, at 7 and 3 days of curing, respectively, 80% and 60% of 28-days strength, which is the control parameter of Sao Paulo-DOT instructions for SAC. Findings indicated that, due to their good mechanical behavior, SAC mixtures are viable alternatives as layers in heavy and very heavy traffic pavements. Additionally, SAC’s high strengths at earlier curing times have shown their potential to reduce construction time.

Downloads

Download data is not yet available.

Author Biographies

Luíza Rijo Valoura, University of São Paulo, São Paulo – Brazil

M.Sc candidate in Transportation Engineering at University of São Paulo, Brazil. Her research interests cover stabilized soils and recycled aggregates. She holds a BSc degree in Civil Engineering from Federal University of Alagoas.

Matheus Francisco da Silva, University of São Paulo, São Paulo – Brazil

PhD candidate in Transportation Engineering at University of São Paulo, Brazil. His research interests cover stabilized soils and recycled aggregates. He holds a BSc degree in Civil Engineering and a MSc degree in Transportation Engineering from University of São Paulo. He worked as an Assistant Professor at University Moura Lacerda, Brazil.

Ana Paula Furlan, University of São Paulo, São Paulo – Brazil

Professor at São Carlos School of Engineering - University of
São Paulo, Brazil. She has a PhD degree in Transportation Engineering from University
of São Paulo, Brazil and a MSc degree in Civil Engineering - Geotechnical Engineering
University of Campinas. She has a BSc degree in Civil Engineering from Piracicaba
School of Engineering. She pursues research on road materials, focusing on mechanical
properties and durability.

References

AASHTO (1999) AASHTO T 307-99: Standard method of test for determining the resilient modulus of soils and aggregate materials. Washington, US: American Association of State Highway and Transportation Officials.

ACI (1990) State-of-the-art report on soil cement. ACI Materials Journal, v. 87, n. 4, pp. 395-417, 1990. DOI: https://doi.org/10.14359/2140

Asgari, M. R.; A. B. Dezfuli and M. Bayat. (2015) Experimental study on stabilization of a low plasticity clayey soil with cement/lime. Arabian Journal of Geosciences, vol. 8, p. 1439 – 1452. DOI: 10.1007/s12517-013-1173-1. DOI: https://doi.org/10.1007/s12517-013-1173-1

ABNT-(2012) Norma NBR-1202: Solo-cimento – ensaio de compactação. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

ABNT-(2016) Norma NBR-7182: Solo – ensaio de compactação. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

ABNT-(2018) NBR-16697: Cimento Portland – requisitos. Rio de Janeiro: Associação Brasileira de Normas Técnicas.

Baghini, M. S.; A. Ismail; M. P. Asghar; G. Fendereski and M. Sadeghi. (2017) Measuring the effects of styrene butadiene copolymer latex-Portland cement additives on properties of stabilized soil-aggregate base. International Journal of Pavement Research and Technology, v. 11, n. 5, p. 458-469. DOI: 10.1016/j.ijprt.2017.12.001. DOI: https://doi.org/10.1016/j.ijprt.2017.12.001

Bahar, R.; M. Benazzoug and S. Kenai. (2004) Performance of compacted cement-stabilised soil. Cement and Concrete Composites, v. 26, n. 7, p. 811–820. DOI: 0.1016/j.cemconcomp.2004.01.003. DOI: https://doi.org/10.1016/j.cemconcomp.2004.01.003

Balbo, J. T. (2007) Pavimentação asfáltica: materiais, projeto e restauração (1ª ed.). São Paulo: Oficina de Textos.

Balbo, J. T. (2013) Relations between indirect tensile and flexural strengths for dry and plastic concretes. Rev. IBRACON Estrut Mater, 6 (6). DOI: 10.1590/S1983-41952013000600003. DOI: https://doi.org/10.1590/S1983-41952013000600003

Ban, H. and S. Park. (2014) Characteristics of modified soil-aggregate system and their application in pavements. ASCE Journal of Materials in Civil Engineering, v. 18, n. 6, p. 1672–1678. DOI: 10.1007/s12205-014-0639-3. DOI: https://doi.org/10.1007/s12205-014-0639-3

Basha, E. A.; R. Hashim; H. B. Mahmud and A. S. Muntohar. (2005) Stabilization of residual soil with rice husk ash and cement. Construction and Building Materials, v.19, p. 448-453. DOI: 10.1016/j.conbuildmat.2004.08.001. DOI: https://doi.org/10.1016/j.conbuildmat.2004.08.001

Behnood, A. (2018) Soil and clay stabilization with calcium- and non-calcium-based additives: A state-of-the-art review of challenges, approaches and techniques. Transportation Geotechnics, v. 17, part A, p. 14-32. DOI:10.1016/j.trgeo.2018.08.002. DOI: https://doi.org/10.1016/j.trgeo.2018.08.002

Bessa, I. S.; A. L. Aranha; K. L. Vasconcelos; A. H. M. Silva and L. B. Bernucci. (2016) Laboratory and field evaluation of recycled unbound layers with cement for use in asphalt pavement rehabilitation. Materials and Structures, v.49, p. 2669-2680. DOI: 10.1617/s11527-015-0675-6. DOI: https://doi.org/10.1617/s11527-015-0675-6

Consoli, N. C.; A. V. da Fonseca; R. C. Cruz and S. R. Silva (2011) Voids/cement ratio controlling tensile strength of cement-treated soils. Journal of Geotechnical and Geoenvironmental Engineering, v. 137, n. 11, pp. 1126-1131. DOI: 10.1061/(ASCE)GT.1943-5606.0000524. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000524

DER-SP-(2006a) Norma ET-DE-P00/007ª: Sub-base ou base de solo-brita-cimento. São Paulo: Departamento de Estradas de Rodagem de São Paulo.

DER-SP (2006b) Norma ET-DE-P00/006B: Sub-base ou base de solo-brita. São Paulo: Departamento de Estradas de Rodagem de São Paulo.

DER-SP-(2006c) Norma IP-DE-P00/001: Instrução de projeto de pavimentação. São Paulo: Departamento de Estradas de Rodagem de São Paulo.

DNER-(1994) Norma ME-138/94: Pavimentos flexíveis - misturas betuminosas – determinação da resistência à tração por compressão diametral. Rio de Janeiro: Departamento Nacional de Estradas de Rodagem.

DNIT-(2010) Norma 143/2010-ES: Pavimentação – base de solo-cimento – especificação de serviço. Rio de Janeiro: Departamento Nacional de Infraestrutura de Transportes.

DNIT (2018) Norma 135/2018-ME: Pavimentação asfáltica - misturas asfálticas - determinação do módulo de resiliência - método de ensaio. Rio de Janeiro: Departamento Nacional de Infraestrutura de Transportes.

George, K. P. (1990) Characterization and structural design of cement-treated base. Transportation Research Record, n. 1288, pp. 78-87.

Horpibulsuk, S.; R. Rachan; A. Chinkulkijniwat; Y. Raksachon and A. Suddeepong. (2010) Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Construction and Building Materials, v. 24, n. 10, p. 2011–2021. DOI:10.1016/j.conbuildmat.2010.03.011. DOI: https://doi.org/10.1016/j.conbuildmat.2010.03.011

Fedrigo, W. (2015) Reciclagem de pavimentos com adição de cimento Portland: definição das bases para um método de dosagem. Dissertação (Mestrado). Universidade Federal do Rio Grande do Sul, Porto Alegre.

Fedrigo, W.; W. P. Nuñez; M. A. C. López; T. R. Kleinert and J. A. P. Ceratti. (2018) A study on the resilient modulus of cement-treated mixtures of RAP and aggregates using indirect tensile, triaxial and flexural tests. Construction and Building Materials, 171, p. 161 – 169. DOI: 10.1016/j.conbuildmat.2018.03.119. DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.119

Furlan, A. P.; A. Razakamanantsoa; H. Ranaivomanana; D. Levacher and T. Katsumi. (2018) Shear strength performance of marine sediments stabilized using cement, lime and fly ash. Construction and Building Materials, v. 184, pp. 454-463. DOI: 10.1016/j.conbuildmat.2018.06.231. DOI: https://doi.org/10.1016/j.conbuildmat.2018.06.231

Furlan, A. P.; A. Razakamanantsoa; H. Ranaivomanana; O. Amiri; D. Levacher and D. Deneele. (2021) Effect of fly ash on microstructural and resistance characteristics of dredged sediment stabilized with lime and cement. Construction and Building Materials, v. 272. DOI: 10.1016/j.conbuildmat.2020.121637. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121637

Hicks, R. J. and C. L. Monismith (1971) Factors influencing the resilient response of granular materials. Transportation Research Record, n. 435, pp. 15-31.

Jitsangiam, P.; K. Nusit; S. Chummuneerat; P. Chindaprasirt and P. Pichayapan. (2016) Fatigue assessment of cement-treated base for roads: an examination of beam-fatigue tests. Journal of Materials in Civil Engineering, v. 28, n. 10. DOI: 10.1061/(ASCE)MT.1943-5533.0001601. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001601

Kawahashi, J.; R. B. Tomei Junior; E. K. Tatsuta; J. T. Balbo and D. C. Balzan. (2010) Estabilização de solos siltosos expansivos de São Paulo com ligantes com elevado teor de escória para pavimentação. Transportes, v. 18, n. 2, p. 5-16. DOI: 10.14295/transportes.v18i2.418. DOI: https://doi.org/10.14295/transportes.v18i2.418

LCPC (2000) Traitement des sols à la chaux et/ou aux liants hydrauliques: application à la realization des remblais et des couches de forme. Paris, FR: Laboratoire Central des Ponts et Chaussées.

Mehta, P. K. and P. J. M. Monteiro. (2006) Concrete: microstructure, properties and materials (3ª ed.). New York, U: McGraw-Hill.

Nascimento, R. S. and F. S. Albuquerque. (2018) Estudo de desempenho à fadiga de base cimentada tipo BGTC na BR-101/SE. Transportes, v. 26, n. 1, p. 21-36. DOI: 10.14295/transportes.v26i1.1358. DOI: https://doi.org/10.14295/transportes.v26i1.1358

Nogami, J. S. and D. F. Villibor. (1981) A new soil classification system for pavement applications. Proceedings of the Brazilian Symposium of Tropical Soils in Engineering. Rio de Janeiro: COPPE/CNPq/ABMS.

Parente, E. B. (2002) Avaliação do comportamento mecânico das misturas de solo-cimento e fosfogesso e cimento para uso na construção rodoviária. Dissertação (Mestrado). Universidade de São Paulo, São Carlos.

Parreira, A. B.; C. A. T. Carmo and F. J. C. Cunto. (1998) Estudo do módulo de resiliência de materiais usados em pavimentação. In Anais da XXXI Reunião Anual de Pavimentação, v. 1, p. 233-247.

Pezo, R. F.; G. Claros; W. R. Hudson and K. H. Stokoe. (1992) Development of a reliable resilient modulus test for subgrade and non-granular subbase materials for use in routine pavement design. Austin, US: TxDOT (Research Report 1177-4F).

PCA (1992) Soil-cement laboratory handbook. Skokie, US: Portland Cement Association.

Prusinski, J. and R. S. Bhattacharja. (1999) Effectiveness of Portland cement and lime stabilizing clay soils. Transportation Research Record, vol.1, p. 215-227. DOI: 10.3141/1652-28. DOI: https://doi.org/10.3141/1652-28

Puppala, A. J.; A. Pedarla and T. Bheemasetti. (2015) Chapter 10 - Soil modification by admixtures: concepts and field applications. Ground Improvement Case Histories Chemical, Electrokinetic, Thermal and Bioengineering. Texas: Department of Civil Engineering, The University of Texas at Arlington, p. 291-309. DOI: https://doi.org/10.1016/B978-0-08-100191-2.00010-1

Salehi, M.; M. Bayat; M. Saadat and M. Nasri. (2021) Experimental study on mechanical properties of cement-stabilized soil blended with crushed stone waste. Geotech Engineering and Testing, v.25, n.6, p. 1974 – 1984. DOI: 10.1007/s12205-021-0953-5. DOI: https://doi.org/10.1007/s12205-021-0953-5

Sant’Anna, G. L.; C. C. Machado; C. A. B. de Carvalho; D. C. Lima and D. C. M. Fernandes (2003) Comportamento resiliente de um solo argiloso da região de Viçosa-MG no estado natural e estabilizado com cimento e alcatrão fracionado. Revista Árvore, v.27, n.3, p. 269-278. DOI: 10.1590/S0100-67622003000300001. DOI: https://doi.org/10.1590/S0100-67622003000300001

Scrivener, K. (2003) Calcium aluminate cements. In: Newman, J. and B. S. Choo (Editors) Advanced concrete technology. v. 3, pp. 1-31. Butterworth-Heinemmann, Oxford, UK, 2003. DOI: 10.1016/B978-075065686-3/50278-0. DOI: https://doi.org/10.1016/B978-075065686-3/50278-0

Singh, R. and D. Patel. (2017) Modification of strength properties of soil-aggregate system on cement addition. Engineering Science and Technology, v.9, n.3, pp 1-10, 2017. DOI: 10.4314/ijest.v9i3.1. DOI: https://doi.org/10.4314/ijest.v9i3.1

Simoni, J. P. S. C. (2019) Contribuição acerca da dosagem e do comportamento de misturas solo-agregado-cimento para uso em camadas de pavimentos. Dissertação (Mestrado). Universidade de São Paulo, São Carlos.

Simoni, J. P. S. C.; L. R. Valoura and A. P. Furlan (2019) Contribuição ao estudo da dosagem e do comportamento mecânico de misturas solo-agregado-cimento. In Anais do XXXIII ANPET-Associação Nacional de Pesquisa e Ensino em Transportes (Balneário Camboriú, SC), Rio de Janeiro: ANPET, p. 2028 - 2039.

Souza, M. L. (1981) Método de projeto de pavimentos flexíveis. Rio de Janeiro: DNER - IPR.

Suebsuk, J.; S. Horpibulsuk; A. Suksan; C. Suksiripattanapong; T. Phoongernkham and A. Arulrajah. (2019) Strength prediction of cement-stabilised reclaimed asphalt pavement and lateritic soil blends. International Journal of Pavement Engineering, v. 20, n. 3, pp. 332-338. DOI: 10.1080/10298436.2017.1293265. DOI: https://doi.org/10.1080/10298436.2017.1293265

Svenson, M. (1980) Ensaios triaxiais dinâmicos de solos argilosos. Dissertação (Mestrado). Universidade Federal do Rio de Janeiro, Rio de Janeiro.

Yoder, E. J. and M. W. Witczak. (1975) Principles of pavement design, 2nd ed. New York: Wiley. DOI: https://doi.org/10.1002/9780470172919

Downloads

Published

2022-11-03

How to Cite

Rijo Valoura, L. ., da Silva, M. F. ., & Furlan, A. P. (2022). Laboratory investigation of soil-aggregate-cement mixture. TRANSPORTES, 30(3), 2646. https://doi.org/10.14295/transportes.v30i3.2646

Issue

Section

Artigos