Evaluating the TOPODATA digital elevation model as a source of information for cycling planning purposes: a case study for a small-sized Brazilian city
DOI:
https://doi.org/10.14295/transportes.v30i3.2697Keywords:
Bicycle, Terrain slope, PEC-PCD, GNSS, TOPODATA DEMAbstract
The present study aims to evaluate the TOPODATA Digital Elevation Model (DEM) as a source of relevant altimetric information for urban cycling planning. A case study was conducted in the city of Bariri-SP. The Cartographic Accuracy Standard of Digital Cartographic Products (PEC-PCD), assessed by comparing the TOPODATA altitudes with homologous altitudes surveyed by a precise satellite method (GNSS), suggests that the DEM may not be adequate for phases of cycling planning that require greater detailing of the elements to be designed. A moderate to strong positive spatial autocorrelation was observed between the DEM errors. Regarding its usability for estimating the average slopes of the road segments, however, the results suggest that TOPODATA average slopes do not differ statistically from those estimated with field-surveyed data and, for the two criteria adopted for acceptable gradient lengths for cycling, more than 82% of the road segments were classified similarly using both sources of information.
Downloads
References
AASHTO (1999) Guide for the Development of Bicycle Facilities (3rd ed.). Washington D. C: Association of State Highway and Transportation Officials.
Anselin, L. (1995) Local Indicators of Spatial Association - LISA. Geographical Analysis, v. 27, n. 2, p. 93-115.
Antonakos, C. L. (1994) Environmental and Travel Preferences of Cyclists. Transportation Research Record, n. 1438, p. 25-33.
Araújo, V. O. H. (2016) Usabilidade de Geoportais: O Caso do Visualizador da Infraestrutura Nacional de Dados Espaciais (INDE). Masters Dissertation (Defense Engineering), Military Engineering Institute, Rio de Janeiro.
AUSTROADS (2014) Cycling Aspects of Austroads Guides (2nd ed.). Sydney: Austroads Ltd. Available at: <https://roads-waterways.transport.nsw.gov.au/documents/business-industry/partners-and-suppliers/lgr/cycling-aspects-of-austroads-guides.pdf>. Access: August 22, 2022.
Brazil (1984) Decree Nr. 89,817 of June 20, 1984. Technical Norms of Brazilian National Cartography. Brazilian Union Official Diary from June 22, 1984, Brasília.
Brazil (2012) Law Nr. 12,587 of January 3, 2012. Establishes the Guidelines of the National Urban Mobility Policy. Brazilian Union Official Diary from January 4, 2012, Brasília.
Broach, J.; J. Dill and J. Gliebe (2012) Where do Cyclists Ride? A Route Choice Model Developed with Revealed Preference GPS Data. Transportation Research Part A, v. 46, n. 10, p. 1730-1740. DOI: 10.1016/j.tra.2012.07.005.
Carvalho, J. A. B. and D. C. Silva (2018) Métodos para Avaliação da Acurácia Posicional Altimétrica no Brasil. Revista Brasileira de Cartografia, v. 70, n. 2, p. 725-744. DOI: 10.14393/rbcv70n2-45404.
CTB (2010) Código de Trânsito Brasileiro (4th ed.). Brasília: Ed. Câmara. Available at: <http://bd.camara.gov.br>. Access: March 10, 2022.
D’Agostino, R. and E. S. Pearson (1973) Tests for Departure from Normality. Empirical Results for the Distributions of b_2and √(b_1 ). Biometrika, v. 60, n. 3, p. 613-622.
DSG (2011) Especificação Técnica para a Aquisição de Dados Geoespaciais Vetoriais (2nd ed.). Brazilian Directorate of the Geographical Service, Brazilian Defense Ministry, Department of Science and Technology, Brasília.
EMBRAPA (1979) Brazilian National Soil Survey and Conservation Service. In: 10th Soil Survey Technical Meeting, Brazilian Agricultural Research Corporation, Rio de Janeiro.
Farr, T. G.; P. A. Rosen; E. Caro; R. Crippen; R. Duren; S. Hensley; M. Kobrick; M. Paller; E. Rodriguez; L. Roth; D. Seal; S. Shaffer; J. Shimada; J. Umland; M. Werner; M. Oskin; D. Burbank and D. Alsdorf (2007) The Shuttle Radar Topography Mission. Reviews of Geophysics, v. 45. DOI: 10.1029/2005RG000183.
Ferreira, G. F. (2014) Emprego de Simulação no Controle de Qualidade em Cartografia Aplicado a Modelos Digitais de Superfícies Oriundos de Sensores Orbitais Segundo o PEC-PCD. Masters Dissertation (Geodetic Sciences and Geoinformation Technologies), Federal University of Pernambuco, Recife.
FHWA (1977) A Bikeway Criteria Digest: The ABCD's of Bikeways. Offices of Research and Development: Federal Highway Administration - US Department of Transportation. Washington D. C.
Field, A. (2009) Descobrindo a Estatística Usando o SPSS (2nd ed.). Porto Alegre: Artmed.
Garofalo, D. F. T. and V. Leisenberg (2015) Análise Comparativa da Informação Altimétrica Presente nos Modelos Digitais de Elevação ASTER GDEM 1 e 2, SRTM e TOPODATA. In: 17th Brazilian Symposium on Remote Sensing, p. 2867-2875, João Pessoa.
Holmes, K. W.; O. A. Chadwick and P. C. Kyriakidis (2000) Error in a USGS 30-meter Digital Elevation Model and its Impact on Terrain Modeling. Journal of Hydrology, v. 233, p. 154-173.
Hood, J.; E. Sall and B. Charlton (2011) A GPS-based Bicycle Route Choice Model for San Francisco, California. Transportation Letters: The International Journal of Transportation Research, v. 3, n. 1, p. 63-75. DOI: 10.3328/TL.2011.03.01.63-75.
IBGE (2017) Avaliação da Qualidade de Dados Geoespaciais. Brazilian Institute of Geography and Statistics, Cartography Coordination, Rio de Janeiro. Available at: <https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2101152>. Access: September 13, 2021.
Kang, L. and J. D. Fricker (2013) Bicyclist Commuters’ Choice of On-Street Versus Off-Street Route Segments. Transportation, v. 40, n. 5, p. 887-902. DOI: 10.1007/s11116-013-9453-x.
Krenn, P. J.; P. Oja and S. Titze (2015) Development of a Bikeability Index to Assess the Bicycle-Friendliness of Urban Environments. Open Journal of Civil Engineering, v. 5, p. 451-459. DOI: 10.4236/ojce.2015.54045.
Landau, E. C. and D. P. Guimarães (2011) Análise Comparativa entre os Modelos Digitais de Elevação ASTER, SRTM e TOPODATA. In: 15th Brazilian Symposium on Remote Sensing, p. 4003-4010, Curitiba.
Larsen, J. and A. El-Geneidy (2011) A Travel Behavior Analysis of Urban Cycling Facilities in Montréal, Canada. Transportation Research Part D, v. 16, n. 2, p. 172-177. DOI: 10.1016/j.trd.2010.07.011.
Lin, J. J. and Y. H. Wei (2018) Assessing Area-wide Bikeability: A Grey Analytic Network Process. Transportation Research Part A, v. 113, p. 381-396. DOI: 10.1016/j.tra.2018.04.022.
Lowry, M.; P. Furth and T. Hadden-Loh (2016) Prioritizing New Bicycle Facilities to Improve Low-Stress Network Connectivity. Transportation Research Part A, v. 86, p. 124-140. DOI: 10.1016/j.tra.2016.02.003.
Luzardo, A. J. R.; R. M .C. Filho and I. B. Rubim (2017) Análise Espacial Exploratória com o Emprego do Índice de Moran. GEOgraphia, v. 19, n. 40, p. 162-179. DOI: 10.22409/GEOgraphia2017.v19i40.a13807.
Ma, L. and J. Dill (2017) Do People’s Perceptions of Neighborhood Bikeability Match “Reality”? The Journal of Transport and Land Use, v. 10, n. 1, p. 291-308. DOI: 10.5198/jtlu.2015.796.
Magalhães, J. R. L.; V. B G. Campos and R. A. M. Bandeira (2015) Metodologia para Identificação de Redes de Rotas Cicláveis em Áreas Urbanas. The Journal of Transport Literature, v. 9, n. 3, p. 35-39. DOI: 10.1590/2238-1031.jtl.v9n3a7.
Masri, O. E. and A. Y. Bigazzi (2019) Road Grade Estimates for Bicycle Travel Analysis on a Street Network. Transportation Research Part C, v. 104, p. 158-171. DOI: 10.1016/j.trc.2019.05.004.
Menghini, G.; N. Carrasco; N. Schüssler and K. W. Axhausen (2010) Route Choice of Cyclists in Zurich. Transportation Research Part A, v. 44, n. 9, p. 754-765. DOI: 10.1016/j.tra.2010.07.008.
Monari, M. (2018) Método para Definição de Rede de Rotas Cicláveis em Áreas Urbanas de Cidades de Pequeno Porte: Um Estudo de Caso para a Cidade de Bariri-SP. Masters Dissertation (Transportation Engineering), University of São Paulo, São Carlos.
Monari, M.; P. C. L. Segantine and I. Silva (2019) Avaliação do Modelo Digital De Elevação Shuttle Radar Topography Mission (SRTM) como Ferramenta no Processo de Identificação de Rotas Cicláveis: Um Estudo de Caso para a Cidade de Bariri-SP. In: Proceedings of the 33rd Annual Meeting of the Brazilian National Association for Research and Education in Transport (ANPET). Available at: <http://www.anpet.org.br/anais/documentos/2019/Planejamento%20Territorial%20do%20Transporte/Mobilidade%20Urbana%20Sustent%C3%A1vel:%20Transporte%20Ativo%20I/2_119_AC.pdf>. Access: August 22, 2022.
Moran, P.A.P. (1947) The Interpretation of Statistical Maps. In: Proceedings of the Cambridge Philosophy Society, v. 44, p. 342-344.
Neri, T. B. (2012) Proposta Metodológica para Definição de Rede Cicloviária: Um Estudo de Caso de Maringá. Masters Dissertation (Urban Engineering), State University of Maringá, Maringá.
Payne, K. C. and M. Dror (2015) Construction of a Topographical Road Graph for Bicycle Tour Routes. Sports Technology, v. 8, n. 1, p. 1-11. DOI: 10.1080/19346182.2015.1063642.
Rana, V. K. and T. M. V. Suryanarayana (2019) Visual and Statistical Comparison of ASTER, SRTM, and Cartosat Digital Elevation Models for Watershed. Journal of Geovisualization and Spatial Analysis, v. 3, n. 12, DOI: 10.1007/s41651-019-0036-z.
Robbi, C. (2000) Sistema para Visualização de Informações Cartográficas para Planejamento Urbano. Doctoral thesis (Applied Data Processing). Brazilian National Institute for Space Research, São José dos Campos.
Sener, I. N.; N. Eluru and C. R. Bhat (2009) An Analysis of Bicycle Route Choice Preferences in Texas, US. Transportation, v. 36, n. 5, p. 511-539. DOI: 10.1007/s11116-009-9201-4.
Silva, I. and P. C. L. Segantine (2015) Topografia para Engenharia Civil - Teoria e Prática de Geomática (1st ed.). Rio de Janeiro: Elsevier.
Silva, L. M.; B. Q. Silva and C. A. B. Schuler (2018) Utilização de Cartas Imagem para Caracterização do Zoneamento Urbano. Revista Brasileira de Geofísica, v. 11, n. 4, p. 1401-1415. DOI: 10.26848/rbgf.v11.4.p1401-1415.
Simeão, J. V. P.; G. G. Manzato and E. Viviani (2019) Recursos de Geoprocessamento Aplicados à Análise da Declividade da Malha Cicloviária da Cidade de São Paulo. Revista Brasileira de Cartografia, v. 71, n. 1, p. 253-273. DOI: 10.14393/rbcv71n1-2208.
Stinson, M. A. and C. R. Bhat (2003) An Analysis of Commuter Bicyclist Route Choice Using a Stated Preference Survey. Transportation Research Record, n. 1828, p. 107-115.
Toole, J. (2010) Revising the AASHTO Guide for the Development of Bicycle Facilities. The US National Cooperative Highway Research Program. Hyattsville, USA. Available at: <https://onlinepubs.trb.org/onlinepubs/nchrp/docs/nchrp_15-37_fr.pdf>. Access: August 22, 2022.
Valeriano, M. M. and D. F. Rossetti (2012) TOPODATA: Brazilian Full Coverage Refinement of SRTM Data. Applied Geography, v. 32, p. 300-309. DOI: 10.1016/j.apgeog.2011.05.004.
Viel, J. A.; K. K. Rosa and C. W. Mendes Júnior (2020) Avaliação da Acurácia Vertical dos Modelos Digitais de Elevação SRTM, ALOS World 3D e ASTER GDEM: Um Estudo de Caso no Vale dos Vinhedos, RS - Brasil. Revista Brasileira de Geografia Física, v. 13, n. 5, p. 2255-2268.
Winters, M.; K. Teschke; M. Grant; E. M. Setton and M. Brauer (2010) How Far Out the Way Will We Travel? Built Environmental Influences on Route Selection for Bicycle and Car Travel. Transportation Research Record, n. 2190, p. 1-10. DOI: 10.3141/2190-01.
Winters, M.; M. Brauer; E. M. Setoon and K. Teschke (2013) Mapping Bikeability: A Spatial Tool to Support Sustainable Travel. Environment and Planning B: Planning and Design, v. 40, p. 865-883. DOI: 10.1068/b38185.
Ziemke, D.; S. Metzler and K. Nagel (2017) Modeling Bicycle Traffic in an Agent-Based Transport Simulation. Procedia Computer Science, v. 109, p. 923-928. DOI: 10.1016/j.procs.2017.05.424.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Marcelo Monari, Paulo César Lima Segantine, Irineu da Silva
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.