Development of impact resonance test to determine the stiffness of different materials

Authors

  • Ana Karoliny Lemos Bezerra Federal University of Ceará, Ceará – Brazil https://orcid.org/0000-0002-9540-0837
  • Nicolas de Carvalho Monteiro Federal University of Ceará, Ceará – Brazil https://orcid.org/0000-0001-5131-2088
  • Caio Costa do Amaral Federal University of Ceará, Ceará – Brazil https://orcid.org/0000-0002-6555-6443
  • Alexandre Augusto da P. Coelho Federal University of Ceará, Ceará – Brazil
  • Jarbas Aryel Nunes da Silveira Federal University of Ceará, Ceará – Brazil
  • Lucas Feitosa de A. L. Babadopulos Federal University of Ceará, Ceará – Brazil
  • Jorge Barbosa Soares Federal University of Ceará, Ceará – Brazil

DOI:

https://doi.org/10.14295/transportes.v30i3.2757

Keywords:

Non-destructive testing, Impact resonance, Bituminous materials, Stiffness

Abstract

Non-destructive tests have been used for viscoelastic characterization of asphalt
mixtures. An impact resonance test was developed at the Federal University of Ceará, with the intention to apply it primarily to bituminous materials. This paper presents the assembly and first results of the test. As a step in the validation, experiments with linear elastic materials were performed, being 1 steel and 3 mortar samples. The materials were submitted to classical quasi-static stiffness tests and to the developed dynamic impact resonance test. The results indicated a small difference between the modulus values of the two tests, 2.15% for steel and between 4-13% for mortar. This indicates that the developed impact resonance test produces interpretable resonance results and has the potential to be used to determine the viscoelastic properties of bituminous
materials. 

Downloads

Download data is not yet available.

References

Aragon, G., Aragon, A., Santamaria, A., Esteban, A., & Fiol, F. (2019). Physical and mechanical characterization of a commercial rendering mortar using destructive and non-destructive techniques. Construction and Building Materials, 224, 835-849. https://doi.org/10.1016/j.conbuildmat.2019.07.034

ASTM (2019) C215 − 19. Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Resonant Frequencies of Concrete Specimens. American Society for Testing and Materials.

Carrasco, E. V. M., Magalhaes, M. D. C., Santos, W. J. D., Alves, R. C., & Mantilla, J. N. R. (2017). Characterization of mortars with iron ore tailings using destructive and nondestructive tests. Construction and Building Materials, 131, 31-38. https://doi.org/10.1016/j.conbuildmat.2016.11.065

Carret, J. C., Pedraza, A., Di Benedetto, H., & Sauzeat, C. (2018). Comparison of the 3-dim linear viscoelastic behavior of asphalt mixes determined with tension-compression and dynamic tests. Construction and Building materials, 174, 529-536. https://doi.org/10.1016/j.conbuildmat.2018.04.156

Costa, J. M., Albuquerque, F. S., Freitas, E. L. F. M. (2017). Obtenção da curva mestra de módulo dinâmico com uso do Ensaio de ressonância por impacto em misturas asfálticas. In: XXXI Congresso Nacional de Pesquisa em Transporte da ANPET, Recife, Pernambuco, Brasil.

DNIT (2019) ME 416/19. Pavimentação asfáltica – Misturas asfálticas – Determinação do módulo dinâmico – Método de ensaio. Departamento Nacional De Infraestrutura E Transportes.

Gudmarsson, A., Rydén, N., & Birgisson, B. (2012). Application of resonant acoustic spectroscopy to asphalt concrete beams for determination of the dynamic modulus. Materials and structures, 45(12), 1903-1913. https://doi.org/10.1016/j.conbuildmat.2014.05.077

Gudmarsson, A., Ryden, N., & Birgisson, B. (2014). Observed deviations from isotropic linear viscoelastic behavior of asphalt concrete through modal testing. Construction and Building Materials, 66, 63-71. https://doi.org/10.1016/j.conbuildmat.2014.05.077

Gudmarsson, A., Ryden, N., Di Benedetto, H., & Sauzéat, C. (2015). Complex modulus and complex Poisson’s ratio from cyclic and dynamic modal testing of asphalt concrete. Construction and Building Materials, 88, 20-31. https://doi.org/10.1016/j.conbuildmat.2015.04.007

Gudmarsson, A., Ryden, N., Di Benedetto, H., Sauzéat, C., Tapsoba, N., & Birgisson, B. (2014). Comparing linear viscoelastic properties of asphalt concrete measured by laboratory seismic and tension–compression tests. Journal of nondestructive evaluation, 33(4), 571-582. https://doi.org/10.1007/s10921-014-0253-9/j.conbuildmat.2014.12.03

Ladipo, I. L., & Muthalif, A. G. (2012). Wideband vibration control in multi degree of freedom system: Experimental verification using labview. Procedia Engineering, 41, 1235-1243. https://doi.org/10.1016/j.proeng.2012.07.306

Makoond, N., Pela, L., & Molins, C. (2019). Dynamic elastic properties of brick masonry constituents. Construction and Building Materials, 199, 756-770. https://doi.org/10.1016/j.conbuildmat.2018.12.071

Marques, A. I., Morais, J., Morais, P., do Rosário Veiga, M., Santos, C., Candeias, P., & Ferreira, J. G. (2020). Modulus of elasticity of mortars: Static and dynamic analyses. Construction and Building Materials, 232, 117216. https://doi.org/10.1016/j.conbuildmat.2019.117216

Mehta, K.P & Monteiro, P.J.M. (2014) Concreto: microestrutura, propriedades e materiais, 2. ed. São Paulo, IBRACON.

Mitra, A. C., Jagtap, A., & Kachare, S. (2018). Development and Validation of Experimental Setup for Flexural Formula of Cantilever Beam Using NI-LabVIEW. Materials Today: Proceedings, 5(9), 20326-20335. https://doi.org/10.1016/j.matpr.2018.06.407

Mounier, D., Di Benedetto, H., & Sauzéat, C. (2012). Determination of bituminous mixtures linear properties using ultrasonic wave propagation. Construction and Building Materials, 36, 638-647. http://dx.doi.org/10.1016/j.conbuildmat.2012.04.136

NBR (2019) 8522-1:19. Determinação da velocidade de propagação de onda ultrassônica. Associação Brasileira De Normas Técnicas.

NBR (2016) 13276:16. Argamassa para assentamento e revestimento de paredes e tetos – Determinação do indíce de consistência. Associação Brasileira De Normas Técnicas.

Ostrovsky, L., Lebedev, A., Matveyev, A., Potapov, A., Sutin, A., Soustova, I., & Johnson, P. (2001). Application of three-dimensional resonant acoustic spectroscopy method to rock and building materials. The Journal of the Acoustical Society of America, 110(4), 1770-1777. https://doi.org/10.1121/1.1402255/j.conbuildmat. 2001-10-01

Singh, R. P., Mausam, K., & Sharma, K. (2021). Synthesis and characterization of nanostructured Stainless steel 316 L through machining. Materials Today: Proceedings, 45, 3488-3491. https://doi.org/10.1016/j.matpr.2020.12.945

Wang, B., & Gupta, R. (2021). Analyzing bond-deterioration during freeze-thaw exposure in cement-based repairs using non-destructive methods. Cement and Concrete Composites, 115, 103830. https://doi.org/10.1016/j.cemconcomp.2020.103830

Published

2022-12-31

How to Cite

Lemos Bezerra, A. K. ., de Carvalho Monteiro, N. ., Costa do Amaral, C. ., da P. Coelho, A. A. ., Nunes da Silveira, J. A. ., Feitosa de A. L. Babadopulos, L. ., & Barbosa Soares, J. (2022). Development of impact resonance test to determine the stiffness of different materials. TRANSPORTES, 30(3), 2757. https://doi.org/10.14295/transportes.v30i3.2757

Issue

Section

Artigos