Determining the dynamic modulus of asphalt mixtures using ultrasonic testing

Authors

DOI:

https://doi.org/10.58922/transportes.v31i3.2788

Keywords:

Ultrasonic testing, P-wave propagation, Viscoelasticity, Asphalt mixture, Dynamic modulus

Abstract

In the last decades, ultrasonic testing has been adapted to determine the dynamic modulus of asphalt mixtures. This technique is promising because strain levels during the test allow the characterization in the linear viscoelastic regime, in addition of being fast non-destructive tests. There may be differences between its results and those of classical tests, mainly due different data treatment, resulting from the adaptation of variables in behavior equations, as well as the complexity of the material, and of how the waves propagate within it. The present paper studies the influence of variables in the equation that describes the relationship between mechanical behavior parameters (modulus, Poisson’s ratio and phase angle) and the ultrasonic pulse velocity. Material parameters are obtained in an indirect manner. The ultrasonic test results were combined with the 2S2P1D rheological model to obtain those variables and were compared to the results from classical tests. Results show that the simplification in considering nil phase angle and a constant value of Poisson's ratio leads to errors of 8.6% for high temperatures and 3.4% for low temperatures. Despite limitations of access to only the high frequency range of master curves, the technique is promising because it allows an adequate, nondestructive and fast characterization in accordance to the characteristics of the material.

Downloads

Download data is not yet available.

References

AASHTO (2011) T 342: Determining Dynamic Modulus of HotMix Asphalt (HMA). Washington: AASHTO.

AASHTO (2017) R 35: Standard Practice for Superpave Volumetric Design for Asphalt Mixtures. Washington: AASHTO.

ASTM (2016) C597: Standard Test Method for Pulse Velocity Through Concrete. West Conshohocken: ASTM International.

Babadopulos, L.F.A.L.; G. Orozco; C. Sauzéat et al. (2019) Reversible phenomena and fatigue damage during cyclic loading and rest periods on bitumen. International Journal of Fatigue, v. 124, p. 303-314. DOI: 10.1016/j.ijfatigue.2019.03.008. DOI: https://doi.org/10.1016/j.ijfatigue.2019.03.008

Babadopulos, L.F.A.L.; L.G.F. Wellington; A.F. Reuber et al. (2014) Avaliação do módulo dinâmico de misturas asfálticas a partir de diferentes modos de carregamento. In Anais do 21º Encontro de Asfalto. Rio de Janeiro: IBP, p. 1-12.

Bernucci, L.B.; L.M.G.D. Motta; J.A.P. Ceratti et al. (2010) Pavimentação Asfáltica: Formação Básica para Engenheiros. Rio de Janeiro: Petrobras.

Carret, J. (2019) Linear Viscoelastic Characterization of Bituminous Mixtures from Dynamic Tests Back Analysis. Tese (doutorado). Université of Lyon, Lyon. Disponível em: <https://inria.hal.science/tel-02170515v2> (acesso em 26/07/2022).

Carret, J.C.; H. Di Benedetto e C. Sauzeat (2020) Linear viscoelastic behavior of asphalt mixes from dynamic frequency response functions. International Journal for Numerical and Analytical Methods in Geomechanics, v. 44, n. 7, p. 1019-1031. DOI: 10.1002/nag.3045. DOI: https://doi.org/10.1002/nag.3045

Cheeke, J.D.N. (2002) Fundamentals and Applications of Ultrasonic Waves. Boca Raton: CRC Press.

Di Benedetto, H.; B. Delaporte e C. Sauzéat (2007) Three-dimensional linear behaviour of bituminous materials: experiments and modelling. International Journal of Geomechanics, v. 7, n. 2, p. 149-157. DOI: 10.1061/(ASCE)1532-3641(2007)7:2(149). DOI: https://doi.org/10.1061/(ASCE)1532-3641(2007)7:2(149)

Di Benedetto, H.; C. Sauzéat e J. Sohm (2009) Stiffness of bituminous mixtures using ultrasonic wave propagation. Road Materials and Pavement Design, v. 10, n. 4, p. 789-814. DOI: 10.1080/14680629.2009.9690227. DOI: https://doi.org/10.1080/14680629.2009.9690227

DNIT (2019) Norma DNIT 416/19 – ME: Pavimentação asfáltica – Misturas asfálticas – Determinação do módulo dinâmico – Método de ensaio. Rio de Janeiro: Departamento Nacional De Infraestrutura de Transportes.

Gudmarsson, A.; N. Ryden; H. Di Benedetto et al. (2015) Complex modulus and complex Poisson’s ratio from cyclic and dynamic modal testing of asphalt concrete. Construction & Building Materials, v. 88, p. 20-31. DOI: 10.1016/j.conbuildmat.2015.04.007. DOI: https://doi.org/10.1016/j.conbuildmat.2015.04.007

Jiang, Z.; J. Ponniah; G. Cascante et al. (2011) Nondestructive ultrasonic testing methodology for condition assessment of hot mix asphalt specimens. Canadian Journal of Civil Engineering, v. 38, n. 7, p. 751-761. DOI: 10.1139/L11-046.

Larcher, N.; M. Takarli; N. Angellier et al. (2015) Towards a viscoelastic mechanical characterization of asphalt materials by ultrasonic measurements. Materials and Structures, v. 48, n. 5, p. 1377-1388. DOI: 10.1617/s11527-013-0240-0. DOI: https://doi.org/10.1617/s11527-013-0240-0

Mandel, J. (1966) Cours de Mécanique des Milieux Continus (Mécanique des Solides, vol. 2). Paris: Gauthier-Villars Editeur.

Mangiafico, S.; L.F.A.L.Babadopulos; C. Sauzéat et al. (2018) Nonlinearity of bituminous mixtures. Mechanics of Time-Dependent Materials, v. 22, n. 1, p. 29-49. DOI: 10.1007/s11043-017-9350-3. DOI: https://doi.org/10.1007/s11043-017-9350-3

Mounier, D.; H. Di Benedetto e C. Sauzéat (2012) Determination of bituminous mixtures linear properties using ultrasonic wave propagation. Construction & Building Materials, v. 36, p. 638-647. DOI: 10.1016/j.conbuildmat.2012.04.136. DOI: https://doi.org/10.1016/j.conbuildmat.2012.04.136

Nguyen, Q.T.; H. Di Benedetto e C. Sauzéat (2015) Linear and nonlinear viscoelastic behaviour of bituminous mixtures. Materials and Structures, v. 48, n. 7, p. 2339-2351. DOI: 10.1617/s11527-014-0316-5. DOI: https://doi.org/10.1617/s11527-014-0316-5

Norambuena-Contreras, J.; D. Castro-Fresno; A. Vega-Zamanillo et al. (2010) Dynamic modulus of asphalt mixture by ultrasonic direct test. NDT & E International, v. 43, n. 7, p. 629-634. DOI: 10.1016/j.ndteint.2010.06.007. DOI: https://doi.org/10.1016/j.ndteint.2010.06.007

Oliveira, L.C. (2019) Efeito dos Períodos de Repouso no Ensaio de Fadiga em Misturas Asfálticas e em Ligantes. Dissertação (mestrado). Engenharia de Transportes, Universidade Federal do Ceará, Fortaleza, CE. Disponível em: <https://repositorio.ufc.br/handle/riufc/51476> (acesso em 26/07/2022).

Papazian, H.S. (1962) The response of linear viscoelastic materials in the frequency domain with emphasis on asphaltic concrete. In: International Conference on the Structural Design of Asphalt Pavements. Michigan: TRB, p. 454-463.

Silva, L.S.V.; J.B.S. Bastos e J.B. Soares (2022) Efeito do uso de corpos de prova moldados e extraídos na caracterização mecânica de misturas asfálticas. Transportes, v. 30, n. 1, p. 2620. DOI: 10.14295/transportes.v30i1.2620. DOI: https://doi.org/10.14295/transportes.v30i1.2620

Theisen, K.M. (2011) Estudo de Parâmetros Constitutivos Extraídos de Dados Experimentais no Comportamento de Misturas Asfálticas. Tese (doutorado). Engenharia Civil, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS. Disponível em: <https://lume.ufrgs.br/handle/10183/35622> (acesso em 26/07/2022).

Williams, M.L.; R.F. Landel e J.D. Ferry (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, v. 77, n. 14, p. 3701-3707. DOI: 10.1021/ja01619a008. DOI: https://doi.org/10.1021/ja01619a008

Published

2023-12-20

How to Cite

Rabelo, K. R., Babadopulos, L. F. de A. L., & Soares, J. B. (2023). Determining the dynamic modulus of asphalt mixtures using ultrasonic testing. TRANSPORTES, 31(3), e2788. https://doi.org/10.58922/transportes.v31i3.2788

Issue

Section

Artigos