Analysis of the temporal profile of use of bikesharing stations in the Bikesampa system

Authors

DOI:

https://doi.org/10.58922/transportes.v31i1.2825

Keywords:

Bikesharing, Temporal pattern, Clusters, Spatial correlation

Abstract

Bikesharing systems have gained popularity over the years and now face the challenge of being responsive and of meeting the growing demand. Thus, understanding the temporal pattern of bikesharing trips is paramount. This study examined data from Bikesampa (a fixed-station system operating in the Brazilian city of São Paulo) and applied k-means clustering to stations according to the hourly demand of pickups and returns. The results revealed three clusters: (i) balanced, (ii) unbalanced, with higher rates of bike pickup in the morning and (iii) unbalanced, with higher rates of bike return in the morning. A spatial autocorrelation analysis showed that cluster membership was not randomly distributed over space, suggesting an association with characteristics of the urban environment, and indicating that the system may require different rebalancing strategies depending on the stations location. Such understanding can help guide the development of operational strategies and user incentive policies to improve the efficiency of bikesharing systems.

Downloads

Download data is not yet available.

References

Almeida, E. (2012). Econometria espatial aplicada (1ª ed.). Campinas: Alínea.

Benedini, D.; P. Lavieri e O. Strambi (2019) Understanding the use of private and shared bicycles in large emerging cities: The case of São Paulo, Brazil. Case Studies on Transport Policy, v. 8, p. 564-575. DOI: 10.1016/j.cstp.2019.11.009. DOI: https://doi.org/10.1016/j.cstp.2019.11.009

BikeItau (2022). Aluguel de Bicicleta em São Paulo. Disponível em: < https://bikeitau.com.br/> (Acesso em: 29/09/2022).

Chardon, C. M. D.; G. Caruso e I. Thomas (2017) Bicycle sharing system ‘success’ determinants. Transportation Research Part A, v. 100, p. 202-2014. DOI: 10.1016/j.tra.2017.04.020. DOI: https://doi.org/10.1016/j.tra.2017.04.020

CET (2020). Mapa de Infraestrutura Cicloviária. Disponível em: <http://www.cetsp.com.br/consultas/bicicleta/mapa-de-infraestrutura-cicloviaria.aspx> (Acesso em: 05/05/2022).

Demaio, P. e J. Gifford (2004) Will Smart Bikes Succeed as Public Transportation in the United States? Journal of Public Transportation, v. 7, n. 2, p. 1-15. DOI: 10.5038/2375-0901.7.2.1. DOI: https://doi.org/10.5038/2375-0901.7.2.1

Eren, E. e V. E. Uz (2020) A review on bike-sharing: The factors affecting bike-sharing demand. Sustainable Cities and Society, v. 54, p. 1-12. DOI: 10.1016/j.scs.2019.101882. DOI: https://doi.org/10.1016/j.scs.2019.101882

Faghih-Imani, A. et al. (2017) An empirical analysis of bike sharing usage and rebalancing: evidence from Barcelona and Seville. Transportation Research Part A, v. 97, p. 177-191. DOI: 10.1016/j.tra.2016.12.007. DOI: https://doi.org/10.1016/j.tra.2016.12.007

Fávero, L. P. e P. Belfiore (2017) Manual de Análise de Dados: Estatística e Modelagem Multivariada com Excel®, SPSS® e Stata® (1ª ed). São Paulo: GEN LTC.

Fishman, E. (2016) Bikeshare: A Review of Recent Literature. Transport Reviews, v. 36, p. 92-113. DOI: 10.1080/01441647.2015.1033036. DOI: https://doi.org/10.1080/01441647.2015.1033036

Fishman, E.; S. Washington e N. Haworth (2013) Bike share: A synthesis of the literature. Transport Reviews, v. 33, p. 148-165. DOI: 10.1080/01441647.2013.775612. DOI: https://doi.org/10.1080/01441647.2013.775612

Fricker, C. e N. Gast (2016) Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity. EURO Journal on Transportation and Logistics, v. 5, n. 3, p. 261-291. DOI: 10.1007/s13676-014-0053-5. DOI: https://doi.org/10.1007/s13676-014-0053-5

Gu, T.; I. Kim e G. Currie (2019) Measuring immediate impacts of a new mass transit system on an existing bike-share system in China. Transportation Research Part A, n. 124, p. 20-39. DOI: 10.1016/j.tra.2019.03.003. DOI: https://doi.org/10.1016/j.tra.2019.03.003

Hu, S. et al. (2021) Examining spatiotemporal changing patterns of bike-sharing usage during COVID-19 pandemic. Journal of Transport Geography, v. 91, p. 16. DOI: 10.1016/j.jtrangeo.2021.102997. DOI: https://doi.org/10.1016/j.jtrangeo.2021.102997

IBGE (2021) Cidades. Disponível em: <https://cidades.ibge.gov.br/brasil/sp/sao-paulo/panorama> (Acesso em: 28/09/2022).

Levy, N.; C. Golani e E. Ben-Elia (2019) An exploratory study of spatial patterns of cycling in Tel Aviv using passively generated bike-sharing data. Journal of Transport Geography, v. 76, p. 325-334. DOI: 10.1016/j.jtrangeo.2017.10.005. DOI: https://doi.org/10.1016/j.jtrangeo.2017.10.005

Macqueen, J. B. (1967) Some methods for classification and analysis of multivariate observations. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, v. 1, p. 281-297. Califórnia: University of California Press.

Metrô-SP (2020a) Caracterização socioeconômica dos deslocamentos. Disponível em: <http://www.metro.sp.gov.br/pesquisa-od/arquivos/Caracteriza%C3%A7%C3%A3o_Socioecon%C3%B4mica_dos_Deslocamentos_2017.pdf> (Acesso em: 15/09/2020).

Metrô-SP (2020b) Pesquisa Origem e Destino de 2017. Disponível em: <http://www.metro.sp.gov.br/pesquisa-od/arquivos/Ebook%20Pesquisa%20OD%202017_final_240719_versao_4.pdf>. (Acesso em: 01/07/2020).

Mix, R.; R. Hurtubia e S. Raveau (2022) Optimal location of bike-sharing stations: A built environment and accessibility approach. Transportation Research Part A, v. 160, p. 126-142. DOI: 10.1016/j.tra.2022.03.022. DOI: https://doi.org/10.1016/j.tra.2022.03.022

Pritchard, J. P. et al. (2019) Potential impacts of bike-and-ride on job accessibility and spatial equity in São Paulo, Brazil. Transportation Research Part A. 386-400. DOI: 10.1016/j.tra.2019.01.022. DOI: https://doi.org/10.1016/j.tra.2019.01.022

Schimohr, K. e J. Scheiner (2021) Spatial and temporal analysis of bike-sharing use in Cologne taking into account a public transit disruption. Journal of Transport Geography, v. 92. DOI: 10.1016/j.jtrangeo.2021.103017. DOI: https://doi.org/10.1016/j.jtrangeo.2021.103017

Shaheen, S. A.; A. Cohen e E. Martin (2013) Public Bikesharing in North America: Early Operator Understanding and Emerging Trends. Transportation Research Record, v. 2387, n. 1, p. 83-92. DOI: 10.3141%2F2387-10. DOI: https://doi.org/10.3141/2387-10

Si, H. et al. (2019) Mapping the bike sharing research published from 2010 to 2018: A scientometric review. Journal of Cleaner Production, v. 213, p. 415-427. DOI: 10.1016/j.jclepro.2018.12.157. DOI: https://doi.org/10.1016/j.jclepro.2018.12.157

Tran, D. T.; N. Ovtracht e F. B. D'Arcier (2015) Modeling Bike Sharing System using Built Environment Factors. Procedia CIRP, v. 30, p. 293-298. DOI: 10.1016/j.procir.2015.02.156. DOI: https://doi.org/10.1016/j.procir.2015.02.156

Wang, X. et al. (2016) Modeling bike share station activity: Effects of nearby business and jobs on trips to and from stations. Journal of Urban Planning and Development, v. 142, n. 1, p. 04015001. DOI: 10.1061/(ASCE)UP.1943-5444.0000273. DOI: https://doi.org/10.1061/(ASCE)UP.1943-5444.0000273

Wu, C.; I. Kim e H. Chung (2021) The effects of built environment spatial variation on bike-sharing usage: A case study of Suzhou, China. Cities, v. 110. DOI: 10.1016/j.cities.2020.103063. DOI: https://doi.org/10.1016/j.cities.2020.103063

Zhang, L. et al. (2015) Sustainable bike-sharing systems: characteristics and commonalities across cases in urban China. Journal of Cleaner Production, v. 97, p. 124-133. DOI: 10.1016/j.jclepro.2014.04.006. DOI: https://doi.org/10.1016/j.jclepro.2014.04.006

Zhu, R. et al. (2020) Understanding spatio-temporal heterogeneity of bike-sharing and scooter-sharing mobility. Computers, Environment and Urban Systems, v. 81. DOI: 10.1016/j.compenvurbsys.2020.101483. DOI: https://doi.org/10.1016/j.compenvurbsys.2020.101483

Downloads

Published

2023-02-27

How to Cite

Malta Baracat, T. ., Strambi, O., & Lavieri, P. . (2023). Analysis of the temporal profile of use of bikesharing stations in the Bikesampa system. TRANSPORTES, 31(1), 2825. https://doi.org/10.58922/transportes.v31i1.2825

Issue

Section

Artigos