Estimation of walking density based on characteristics of the built environment at the level of traffic zones

Authors

DOI:

https://doi.org/10.58922/transportes.v31i3.2874

Keywords:

Built Environment, Walking trips, Spatial regression models, Pedestrian Exposure

Abstract

The influence of the built environment on pedestrian exposure is an essential element for analyzing road safety and urban planning. Due to the scarcity of pedestrian exposure data, road safety modeling can use proxy variables from the built environment to represent quantitative pedestrian exposure and the urban planning does not always consider the pedestrian or estimate in conjunction with other modes. In search of prioritizing pedestrians due to their greater vulnerability in relation to other modes, the aim of the article is to estimate the density of pedestrian trips in traffic zones from the characteristics of the built environment. The method proposes the comparison between global regression, geographically weighted regression (GWR) and the recent multiscale geographically weighted regression (MGWR) approach. The analysis of the residuals proved that the specification of the MGWR model is more powerful in terms of fitting the model and filtering the spatial autocorrelation. Population density, length of roads per zone area and distance to public transport are among the significant predictor variables for estimating the number of walking trips per area of the traffic zone.

Downloads

Download data is not yet available.

References

Amoh-Gyimah, R.; M. Saberi e M. Sarvi (2016) Macroscopic modeling of pedestrian and bicycle crashes: a crosscomparison of estimation methods. Accident; Analysis and Prevention, v. 93, p. 147-159. DOI: 10.1016/j.aap.2016.05.001. PMid:27209153. DOI: https://doi.org/10.1016/j.aap.2016.05.001

Cervero, R. e K. Kockelman (1997) Travel demand and 3D’s: density, diversity and design. Transportation Research Part D, Transport and Environment, v. 2, n. 3, p. 199-219. DOI: 10.1016/S1361-9209(97)00009-6. DOI: https://doi.org/10.1016/S1361-9209(97)00009-6

Cervero, R.; O.L. Sarmiento; E. Jacoby et al. (2009) Influences of built environments on walking and cycling: lessons from Bogotá. International Journal of Sustainable Transportation, v. 3, n. 4, p. 203-226. DOI: 10.1080/15568310802178314. DOI: https://doi.org/10.1080/15568310802178314

Cheng, L.; K. Shi; J. De Vos et al. (2021) Examining the spatially heterogeneous effects of the built environment on walking among older adults. Transport Policy, v. 100, p. 21-30. DOI: 10.1016/j.tranpol.2020.10.004. DOI: https://doi.org/10.1016/j.tranpol.2020.10.004

Clifton, K.J.; P.A. Singleton; C.D. Muhs et al. (2016) Representing pedestrian activity in travel demand models: framework and application. Journal of Transport Geography, v. 52, p. 111-122. DOI: 10.1016/j.jtrangeo.2016.03.009. DOI: https://doi.org/10.1016/j.jtrangeo.2016.03.009

Dhanani, A.; L. Tarkhanyan e L. Vaughan (2017) Estimating pedestrian demand for active transport evaluation and planning. Transportation Research Part A, Policy and Practice, v. 103, p. 54-69. DOI: 10.1016/j.tra.2017.05.020. DOI: https://doi.org/10.1016/j.tra.2017.05.020

Dong, N.; F. Meng; J. Zhang et al. (2020) Towards activity-based exposure measures in spatial analysis of pedestrian– motor vehicle crashes. Accident; Analysis and Prevention, v. 148, p. 105777. DOI: 10.1016/j.aap.2020.105777. PMid:33011425. DOI: https://doi.org/10.1016/j.aap.2020.105777

Ewing, R. e R. Cervero (2010) Travel and built environment. Journal of the American Planning Association, v. 76, n. 3, p. 265-294. DOI: 10.1080/01944361003766766. DOI: https://doi.org/10.1080/01944361003766766

Ewing, R.; A. Hajrasouliha; K.M. Neckerman et al. (2016) Streetscape features related to pedestrian activity. Journal of Planning Education and Research, v. 36, n. 1, p. 5-15. DOI: 10.1177/0739456X15591585. DOI: https://doi.org/10.1177/0739456X15591585

Feuillet, T.; H. Commenges; M. Menai et al. (2018) A massive geographically weighted regression model of walkingenvironment relationships. Journal of Transport Geography, v. 68, p. 118-129. DOI: 10.1016/j.jtrangeo.2018.03.002. DOI: https://doi.org/10.1016/j.jtrangeo.2018.03.002

Fotheringham, A.S.; C. Brunsdon e M. Charlton (2002) Geographically Weighted Regression: the Analysis of Spatially Varying Relationships. Chichester: John Wiley & Sons.

Fotheringham, A.S.; W. Yang e W. Kang (2017) Multiscale Geographically Weighted Regression (MGWR). Annals of the Association of American Geographers, v. 107, n. 6, p. 1247-1265. DOI: 10.1080/24694452.2017.1352480. DOI: https://doi.org/10.1080/24694452.2017.1352480

Gehl, J. (2010) Cities for People. Washington: Island Press.

Guzman, L.A.; J. Peña e J.A. Carrasco (2020) Assessing the role of the built environment and sociodemographic characteristics on walking travel distances in Bogotá. Journal of Transport Geography, v. 88, p. 102844. DOI: 10.1016/j.jtrangeo.2020.102844. DOI: https://doi.org/10.1016/j.jtrangeo.2020.102844

Hermida, C.; M. Cordero e D. Orellana (2019) Analysis of the influence of urban built environment on pedestrian flow in an intermediate-sized city in the Andes of Ecuador. International Journal of Sustainable Transportation, v. 13, n. 10, p. 777-787. DOI: 10.1080/15568318.2018.1514445. DOI: https://doi.org/10.1080/15568318.2018.1514445

Lamíquiz, P. e J. López-Domínguez (2015) Effects of built environment on walking at the neighbourhood scale. A new role for street networks by modelling their configurational accessibility. Transportation Research Part A, Policy and Practice, v. 74, p. 148-163. DOI: 10.1016/j.tra.2015.02.003. DOI: https://doi.org/10.1016/j.tra.2015.02.003

Larrañaga, A.M.; L.I. Rizzi; J. Arellana et al. (2016) The influence of built environment and travel attitudes on walking: a case study of Porto Alegre, Brazil. International Journal of Sustainable Transportation, v. 10, n. 4, p. 332-342. DOI: 10.1080/15568318.2014.933986. DOI: https://doi.org/10.1080/15568318.2014.933986

Lee, J.; M. Abdel-Aty e I. Shah (2019) Evaluation of surrogate measures for pedestrian trips at intersections and crash modeling. Accident; Analysis and Prevention, v. 130, p. 91-98. DOI: 10.1016/j.aap.2018.05.015. PMid:29859623. DOI: https://doi.org/10.1016/j.aap.2018.05.015

Lee, J.; M. Abdel-Aty; H. Huang et al. (2019) Transportation safety planning approach for pedestrians: an integrated framework of modeling walking duration and pedestrian fatalities. Transportation Research Record: Journal of the

Transportation Research Board, v. 2673, n. 4, p. 898-906. DOI: 10.1177/0361198119837962. DOI: https://doi.org/10.1177/0361198119837962

Lee, J.; M. Abdel-Aty; Q. Cai et al. (2018) Integrated modeling approach for non- motorized mode trips and fatal crashes in the framework of transportation safety planning. Transportation Research Record: Journal of the Transportation Research Board, v. 2672, n. 32, p. 49-60. DOI: 10.1177/0361198118772704. DOI: https://doi.org/10.1177/0361198118772704

Lyu, C.; X. Wu; Y. Liu et al. (2020) Exploring multi-scale spatial relationship between built environment and public bicycle ridership. Journal of Transport and Land Use, v. 13, n. 1, p. 447-467. DOI: 10.5198/jtlu.2020.1568. DOI: https://doi.org/10.5198/jtlu.2020.1568

Merlin, L.A.; E. Guerra e E. Dumbaugh (2020) Crash risk, crash exposure, and the built environment: a conceptual review. Accident; Analysis and Prevention, v. 134, p. 105244. DOI: 10.1016/j.aap.2019.07.020. PMid:31405515. DOI: https://doi.org/10.1016/j.aap.2019.07.020

Miranda-Moreno, L.F.; P. Morency e A.M. El-Geneidy (2011) The link between built environment, pedestrian activity and pedestrian–vehicle collision occurrence at signalized intersections. Accident; Analysis and Prevention, v. 43, n. 5, p. 1624-1634. DOI: 10.1016/j.aap.2011.02.005. PMid:21658488. DOI: https://doi.org/10.1016/j.aap.2011.02.005

Nakaya, T.; A.S. Fotheringham; C. Brunsdon et al. (2005) Geographically weighted Poisson regression for disease association mapping. Statistics in Medicine, v. 24, n. 17, p. 2695-2717. DOI: 10.1002/sim.2129. PMid:16118814. DOI: https://doi.org/10.1002/sim.2129

Park, K.; R. Ewing; S. Sabouri et al. (2019) Street life and the built environment in an auto-oriented US region. Cities, v. 88, p. 243-251. DOI: 10.1016/j.cities.2018.11.005. DOI: https://doi.org/10.1016/j.cities.2018.11.005

Song, Y.; L. Merlin e D. Rodriguez (2013) Comparing measures of urban land use mix. Computers, Environment and Urban Systems, v. 42, p. 1-13. DOI: 10.1016/j.compenvurbsys.2013.08.001. DOI: https://doi.org/10.1016/j.compenvurbsys.2013.08.001

Stoker, P.; A. Garfinkel-Castro; M. Khayesi et al. (2015) Pedestrian safety and the built environment: a review of the risk factors. Journal of Planning Literature, v. 30, n. 4, p. 377-392. DOI: 10.1177/0885412215595438. DOI: https://doi.org/10.1177/0885412215595438

Sze, N.N.; J. Su e L. Bai (2019) Exposure to pedestrian crash based on household survey data: effect of trip purpose. Accident; Analysis and Prevention, v. 128, p. 17-24. DOI: 10.1016/j.aap.2019.03.017. PMid:30954782. DOI: https://doi.org/10.1016/j.aap.2019.03.017

Tian, G. e R. Ewing (2017) A walk trip generation model for Portland, OR. Transportation Research Part D, Transport and Environment, v. 52, p. 340-353. DOI: 10.1016/j.trd.2017.03.017. DOI: https://doi.org/10.1016/j.trd.2017.03.017

Torun, A.Ö.; K. Göçer; D. Yesiltepe et al. (2020) Understanding the role of urban form in explaining transportation and recreational walking among children in a logistic GWR model: a spatial analysis in Istanbul, Turkey. Journal of Transport Geography, v. 82, p. 102617. DOI: 10.1016/j.jtrangeo.2019.102617. DOI: https://doi.org/10.1016/j.jtrangeo.2019.102617

Wang, C.-H. e N. Chen (2017) A geographically weighted regression approach to investigating the spatially varied built-environment effects on community opportunity. Journal of Transport Geography, v. 62, p. 136-147. DOI: 10.1016/j.jtrangeo.2017.05.011. DOI: https://doi.org/10.1016/j.jtrangeo.2017.05.011

Yasmin, S.; T. Bhowmik; M. Rahman et al. (2021) Enhancing non-motorist safety by simulating trip exposure using a transportation planning approach. Accident; Analysis and Prevention, v. 156, p. 106128. DOI: 10.1016/j.aap.2021.106128. PMid:33915343. DOI: https://doi.org/10.1016/j.aap.2021.106128

Yu, H.; A.S. Fotheringham; Z. Li et al. (2020) On the measurement of bias in geographically weighted regression models. Spatial Statistics, v. 38, p. 100453. DOI: 10.1016/j.spasta.2020.100453. DOI: https://doi.org/10.1016/j.spasta.2020.100453

Published

2023-12-11

How to Cite

Xavier, V. J., Gomes, M. J. T. L., & Cunto, F. J. C. (2023). Estimation of walking density based on characteristics of the built environment at the level of traffic zones. TRANSPORTES, 31(3), e2874. https://doi.org/10.58922/transportes.v31i3.2874

Issue

Section

Artigos