Evaluation of resistance to fatigue and rutting of binders with rap and biorejuvenator from soybean oil
DOI:
https://doi.org/10.58922/transportes.v32i3.2903Keywords:
Binder. RAP. Fatigue. Rutting.Abstract
The high use of RAP (Reclaimed Asphalt Pavement) in asphalt mixtures can affect resistance to defects. To improve the properties of binders, rejuvenating agents are used, which need to be properly dosed to meet specifications. The aim of this study was to investigate the resistance to fatigue damage and rutting of binders containing RAP and a biorejuvenator from soybean oil. Sixteen binders were evaluated, obtained from a mixture of CAP 50/70 binder, binder extracted from RAP and biorejuvenator. The RAP binder was added to the mixture with pure binder in percentages of 15 and 30%, and biorejuvenator in percentages of 5 and 10%, both in relation to the total mass of the sample. A 100% RAP binder sample was also evaluated. Linear Amplitude Sweep (LAS) and Multiple Stress Creep Recovery (MSCR) tests were carried out to assess fatigue and rutting. In parallel, penetration, softening point, viscosity and colloidal instability index (by SARA fractionation) were determined. The results indicate that increasing content of RAP binder compromises fatigue resistance, due to the increase in the amount of aged binder, while resistance to rutting is affected by increasing the rejuvenator content. The biorejuvenator epoxidized from soybean oil proved to be more suitable in terms of resistance to both defects. A good correlation was found between the fatigue and rutting parameters and the physical properties, unlike the colloidal instability index, which showed low relationship with the mechanical parameters.
Downloads
References
AASHTO (2022) AASHTO M323-22: Performance-Graded Asphalt Binder. Washington, DC: American Association of State Highway and Transportation Officials.
Abed, A.; N. Thom e D. Lo Presti (2018) Design considerations of high RAP-content asphalt produced at reduced temperatures. Materials and Structures, v. 51, n. 4, p. 91. DOI: 10.1617/s11527-018-1220-1. DOI: https://doi.org/10.1617/s11527-018-1220-1
Almeida Jr., P. O. B. (2022) Reciclagem de Misturas 100% RAP: Investigação de Parâmetros para Avaliação e Dosagem de Agentes Rejuvenescedores com Foco na Fadiga. Tese (doutorado). Universidade Federal de Santa Maria. Santa Maria.
Ameri, M.; A. Mansourkhaki e D. Daryaee (2018) Evaluation of fatigue behavior of high reclaimed asphalt binder mixes modified with rejuvenator and softer bitumen. Construction & Building Materials, v. 191, p. 702-712. DOI: 10.1016/j.conbuildmat.2018.09.182. DOI: https://doi.org/10.1016/j.conbuildmat.2018.09.182
ASTM (2011) ASTM D2172-11: Standard Test Methods for Quantitative Extraction of Bitumen From Bituminous Paving Mixtures. West Conshohocken: ASTM.
ASTM (2015) ASTM D 7405-15: Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer. West Conshohocken: ASTM.
DNIT (2020) DNIT 423: Pavimentação – Ligante Asfáltico – Fluência e Recuperação de Ligante Asfáltico Determinados Sob Tensões Múltiplas (MSCR) – Método de Ensaio. Rio de Janeiro: DNIT.
DNIT (2022) DNIT 439: Pavimentação – Ligante Asfáltico – Avaliação da Resistência à Fadiga de Ligantes Asfálticos Usando Varredura de Amplitude Linear (LAS – Linear Amplitude Sweep – Método de Ensaio. Rio de Janeiro: DNIT.
Ferreira, W. (2021) Degree of rap binder activation and its impact on recycled asphalt mixture design. Tese (doutorado). Universidade Federal do Ceará, Fortaleza, CE. Disponível em: <http://repositorio.ufc.br/handle/riufc/60108>. (acesso em 21/03/2023).
Giustozzi, F.; M. Crispino; E. Toraldo et al. (2015) Mix design of polymer-modified and fiber-reinforced warm-mix asphalts with high amount of reclaimed asphalt pavement. Transportation Research Record: Journal of the Transportation Research Board, v. 2523, n. 1, p. 3-10. DOI: 10.3141/2523-01. DOI: https://doi.org/10.3141/2523-01
Huang, B.; X. Shu e D. Vukosavljevic (2011) Laboratory investigation of cracking resistance of hot-mix asphalt field mixtures containing screened reclaimed asphalt pavement. Journal of Materials in Civil Engineering, v. 23, n. 11, p. 1535-1543. DOI: 10.1061/(ASCE)MT.1943-5533.0000223. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000223
Kuang, D.; W. Liu; Y. Xiao et al. (2019) Study on the rejuvenating mechanism in aged asphalt binder with mono-component modified rejuvenators. Construction & Building Materials, v. 223, p. 986-993. DOI: 10.1016/j.conbuildmat.2019.07.330. DOI: https://doi.org/10.1016/j.conbuildmat.2019.07.330
Lesueur, D. (2009) The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification, Advances in Colloid and Interface Science, v. 145, n. 1-2, p. 42-82. http://doi.org/10.1016/j.cis.2008.08.011 PMid:19012871. DOI: https://doi.org/10.1016/j.cis.2008.08.011
Liu, H.; W. Zeiada; G.G. Al-Khateeb et al. (2021) Use of the multiple stress creep recovery (MSCR) test to characterize the rutting potential of asphalt binders: a literature review. Construction & Building Materials, v. 269, p. 121320. DOI: 10.1016/j. conbuildmat.2020.121320. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121320
Mangiafico, S.; H. Di Benedetto; C. Sauzéat et al. (2016) Effect of colloidal structure of bituminous binder blends on linear viscoelastic behaviour of mixtures containing Reclaimed Asphalt Pavement, Materials & Design, v. 111, p. 126-39. http://doi.org/10.1016/j. matdes.2016.07.124. DOI: https://doi.org/10.1016/j.matdes.2016.07.124
Moghaddam, T. e H. Baaj. (2016) The use of rejuvenating agents in production of recycled hot mix asphalt: a systematic review. Construction & Building Materials, v. 114, p. 805-816. DOI: 10.1016/j.conbuildmat.2016.04.015. DOI: https://doi.org/10.1016/j.conbuildmat.2016.04.015
Nascimento, L.A.H. (2016) Previsão da Vida de Fadiga a Partir do Modelo S-VECD. Fortaleza: Departamento de Engenharia de Transportes, Universidade Federal do Ceará. Apresentação.
Olivieri, G.V.; J.V. De Quadros Jr. e R. Giudici (2020) Epoxidation reaction of soybean oil: experimental study and comprehensive kinetic modeling. Industrial & Engineering Chemistry Research, v. 59, n. 42, p. 18808-18823. DOI: 10.1021/acs.iecr.0c03847. DOI: https://doi.org/10.1021/acs.iecr.0c03847
Raul, C.M. (2019) Avaliação a Nível de Ligantes da Aplicabilidade de Material Fresado na Execução de Misturas Asfalticas Antirreflexão de Trincas. Dissertação (mestrado). Escola Politécnica, Universidade de São Paulo. São Paulo. DOI: 10.11606/D.3.2020. tde-07012020-153048.
Shen, J.; S. Amirkhanian e B. Tang (2007) Effects of rejuvenator on performance-based properties of rejuvenated asphalt binder and mixtures. Construction & Building Materials, v. 121, n. 5, p. 236-245. DOI: 10.1016/j.conbuildmat.2006.03.006. DOI: https://doi.org/10.1016/j.conbuildmat.2006.03.006
Silva, J. P. S. (2011) Avaliação dos Efeitos de Produtos Rejuvenescedores em Misturas Asfálticas. Tese (doutorado). Universidade de Brasília. Brasília. Disponível em: <http://repositorio2.unb.br/jspui/handle/10482/8705>. (acesso em 21/03/2023).
Silva, S. (2005). Contribuição ao Estudo do Envelhecimento de Ligantes Asfálticos: Influência da Adição de Polímeros e Comportamento Frente à Radiação UV. Tese (doutorado). Universidade Federal do Rio Grande do Sul. Porto Alegre. Disponível em: < http://hdl. handle.net/10183/7349>. (acesso em 21/03/2023)
Takahashi, M. (2020) Avaliação do Envelhecimento e Rejuvenescimento de Ligantes Asfalticos. Dissertação (mestrado). Escola Politécnica, Universidade de São Paulo. São Paulo. DOI: 10.11606/D.3.2020.tde-25012021-101332. DOI: https://doi.org/10.11606/D.3.2020.tde-25012021-101332
Uchoa, A.; W. Rocha; J. Feitosa et al. (2021) Bio-based palm oil as na additive for asphalt binder: chemical characterization and rheological properties, Construction & Building Materials, v. 285, p. 122883. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122883
Wang, C. e Y. Wang (2019) Physico-chemo-rheological characterization of neat and polymer-modified asphalt binders, Construction & Building Materials, v. 199, p. 471-482. DOI: 10.1016/j.conbuildmat.2018.12.064 DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.064
You, Z.; J. Mills-Beale; J. Foley et al. (2011) Nanoclay-modified asphalt materials: Preparation and characterization, Construction & Building Materials, v. 25, n. 2, p. 1072-8. http://doi.org/10.1016/j.conbuildmat.2010.06.070. DOI: https://doi.org/10.1016/j.conbuildmat.2010.06.070
Zargar, M.; E. Ahmadinia; H. Asli et al. (2012) Investigation of the possibility of using waste cooking oil as a rejuvenating agent for aged bitumen, Journal of Hazardous Materials, v. 233-234, p. 254-258. DOI: 10.1016/j.jhazmat.2012.06.021. PMid:22818590. DOI: https://doi.org/10.1016/j.jhazmat.2012.06.021
Zaumanis, M.; R.B. Mallick e R. Frank (2014) 100% Recycled hot mix asphalt: a review and analysis. Resources, Conservation and Recycling, v. 92, p. 230-245. DOI: 10.1016/j.resconrec.2014.07.007. DOI: https://doi.org/10.1016/j.resconrec.2014.07.007
Zhang, J.; A.N.M. Faruk; P. Karki et al. (2016) Relating asphalt binder elastic recovery properties to HMA cracking and fracture properties. Construction & Building Materials, v. 21, p. 958-964. DOI: 10.1016/j.conbuildmat.2016.05.157. DOI: https://doi.org/10.1016/j.conbuildmat.2016.05.157
Zhou, Z.; X. Gu; Q. Dong et al. (2019) Rutting and fatigue cracking performance of SBS-RAP blended binders with a rejuvenator, Construction & Building Materials, v. 203, p. 294-303. http://doi.org/10.1016/j.conbuildmat.2019.01.119. DOI: https://doi.org/10.1016/j.conbuildmat.2019.01.119
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Andressa Cristina Borges Chaves, Jorge Luiz Oliveira Lucas Júnior, Jorge Barbosa Soares
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.