Evaluating Cumulative Damage Factor (CDF) of 20 Brazilian Airfield Pavement structures using FAARFIELD and BAKFAA

Authors

DOI:

https://doi.org/10.58922/transportes.v32i2.2973

Keywords:

Airport, Flexible pavements , Cumulative Damage Factor , FAARFIELD, Backanalysis

Abstract

There is a growing concern regarding the structural integrity of Brazilian airport pavements. This concern arises from the fact that they were originally designed to accommodate lighter aircraft during an era of lower traffic. However, with the substantial increase in air traffic and the introduction of heavier aircraft, compounded by the aging infrastructure predominantly built between the 1950s and 1970s, these pavements are now confronted with significant challenges. This research involves collecting data on aircraft characteristics, traffic patterns, and pavement layer properties to update information on the pavement life service of existing Brazilian airfield pavements. Research involves the analysis of determine the Cumulative Damage Factor (CDF) of 20 Brazilian airport runways pavement. Backanalysis of deflection basins obtained from Heavy Weight Deflectometer (HWD) tests is conducted using the BAKFAA software. The FAARFIELD software is then employed to calculate the CDF, incorporating the latest information on aircraft mix and pavement conditions. The study reveals that 65% of the analyzed airport pavements consist of 4 structural layers, with 50% of the structures composed of cement-treated base course layers. Notably, 11 airports exhibit a CDF less than 0.01, suggesting potential overdesigned of pavements for existing aircraft movement. Boa Vista Airport/RR (SBBV) stands out with a CDF of 1.5, prompting recommendations for actions to mitigate pavement degradation. The findings offer valuable insights for future actions, maintenance strategies, and recommendations for the construction of new airports.

Downloads

Download data is not yet available.

References

ABNT (2016a) NBR 9604:2016: Abertura de Poço e Trincheira de Inspeção em Solo, com Retirada de Amostras Deformadas e Indeformadas — Procedimento. Rio de Janeiro: ABNT.

ABNT (2016b) NBR 9895:2016: Solo - Índice de Suporte Califórnia (ISC) - Método de Ensaio. Rio de Janeiro: ABNT.

ABNT (2016c) NBR 7180:2016: Solo - Determinação do Limite de Plasticidade. Rio de Janeiro: ABNT.

ABNT (2017) NBR 6459:2017: Solo - Determinação do Limite de Liquidez. Rio de Janeiro: ABNT.

ABNT (2018) NBR 7181:2018: Solo - Análise Granulométrica. Rio de Janeiro: ABNT.

ABNT (2020a) NBR 6484:2020: Solo — Sondagem de Simples Reconhecimento com SPT — Método de Ensaio. Rio de Janeiro: ABNT.

ABNT (2020b) NBR 7182:2020: Solo – Ensaio de Compactação. Rio de Janeiro: ABNT.

AIRBUS S.A.S. (2022) Aircraft Characteristics: Airport and Maintenance Planning. Available at: <https://aircraft.airbus.com/en/ customer-care/fleet-wide-care/airport-operations-and-aircraft-characteristics/aircraft-characteristics> (accessed 07/20/2022).

ANAC (2017) Manual de Sistema de Gerenciamento de Pavimentos Aeroportuários – SGPA. Available at: <https://www.gov.br/ anac/pt-br/centrais-de-conteudo/aeroportos-e-aerodromos/manuais-e-cartilhas/manual-para-sgpa-v3.pdf/view> (accessed 07/13/2022).

ANAC (2020) Manual de Cálculo de PCN de Pavimentos Aeroportuários Usando o COMFAA 3.0. Available at: <https://www.gov.br/ anac/pt-br/centrais-de-conteudo/aeroportos-e-aerodromos/manuais-e-cartilhas/manual-de-calculo-de-pcn-de-pavimentos-aeroportuarios-usando-o-comfaa-3.0/view> (accessed 07/18/2022).

ANAC (2021) Banco de Dados - Concessões de Aeroportos. Available at: <https://www.gov.br/portos-e-aeroportos/pt-br/assuntos/ conteudo/aviacao/banco-de-dados> (accessed 05/20/2021).

ANAC (2022). Consulta Interativa – Indicadores do Mercado de Transporte Aéreo. Available at: <https://www.gov.br/anac/pt-br/ assuntos/dados-e-estatisticas/mercado-de-transporte-aereo/consulta-interativa> (accessed 07/12/2022).

ASTM (2020) ASTM D4748-10: Standard Test Method for Determining the Thickness of Bound Pavement Layers Using Short-Pulse Radar. West Conshohocken: ASTM.

Bejan, A.; J.D. Charles and S. Lorente (2014) The evolution of airplanes, Journal of Applied Physics, v. 116, n. 4, p. 44901. DOI: 10.1063/1.4886855. DOI: https://doi.org/10.1063/1.4886855

BOEING COMMERCIAL AIRPLANES (2022) Airplane Characteristics for Airport Planning. Available at: <https://www.boeing.com/ commercial/airports/> (accessed 07/20/2022).

Brasil (2022) Estudos de Viabilidade Técnica, Econômica e Ambiental dos Aeroportos da 6ª Rodada de Concessões. Available at: <https://www.gov.br/transportes/pt-br/assuntos/conteudo/aviacao/banco-de-dados> (accessed 11/24/2022.

Brill, D.R. and I. Kawa (2017) Advances in FAA Pavement Thickness Design Software: FAARFIELD 1.41. In International Conference on Highway Pavements and Airfield Technology 2017. Philadelphia: American Society of Civil Engineers, p. 92-102. DOI: 10.1061/9780784480953.009. DOI: https://doi.org/10.1061/9780784480953.009

DECEA (2023) Informações Aeronáuticas do Brasil. Available at: <https://aisweb.decea.mil.br/> (accessed 11/10/2023).

DNER (1996) DNER-PRO 273/96: Determinação de Deflexões Utilizando Deflectômetro de Impacto Tipo “Falling Weight Deflectometer (FWD)” - Procedimento. Rio de Janeiro: Departamento Nacional de Estradas de Rodagem.

EMBRAER S.A. (2021) Airport Planning Manual. Available at: <https://www.flyembraer.com/irj/portal/anonymous> (accessed 07/20/2022).

FAA (2021) Advisory Circular nº 150/5320-6G: Airport Pavement Design and Evaluation. Washington: U.S. Department of Transportation.

FAA (2023) Airport Design Software. Available at: <https://www.faa.gov/airports/engineering/design_software> (accessed 11/10/2023).

Kosasih, D. and A. Fibryanto (2005) Analisis Kerusakan Retak Lelah pada Struktur Perkerasan Kaku Landasan Pesawat Udara dengan menggunakan Program Airfield. Jurnal Teknik Sipil, v. 12, n. 1, p. 29-42. DOI: 10.5614/jts.2005.12.1.4. DOI: https://doi.org/10.5614/jts.2005.12.1.4

Miner, M.A. (1945) Cumulative damage in fatigue. Journal of Applied Mechanics, v. 12, n. 3, v. 67, p. A159-A164. DOI: 10.1115/1.4009458. DOI: https://doi.org/10.1115/1.4009458

Downloads

Published

2024-05-21

How to Cite

Santilli, S. R., & Correia, N. de S. (2024). Evaluating Cumulative Damage Factor (CDF) of 20 Brazilian Airfield Pavement structures using FAARFIELD and BAKFAA. TRANSPORTES, 32(2). https://doi.org/10.58922/transportes.v32i2.2973

Issue

Section

Artigos