Effect of different types of fine aggregates on fatigue resistance and self-healing of fine aggregate asphalt matrices

Authors

DOI:

https://doi.org/10.58922/transportes.v32i2.2997

Keywords:

fine aggregate matrix, aggregate mineralogy, fatigue, self-healing

Abstract

Fatigue cracking is one of the most common types of distress in asphalt pavements. Each asphalt concrete (AC) constituent and its interactions are relevant to characterize the resistance to fatigue cracking of the ACs. Also, for the selection of materials, it is essential to consider not only the capacity of the material resist to fatigue cracking but also its ability to heal. Materials owning self-heal properties can enlarge the ACs fatigue life. Many former studies investigated the self-healing of bituminous materials at the binder level. However, this material property can be dependent on the binder-aggregate interactions. Thus, the current work aims to evaluate the influence of using different fine aggregates on the fatigue cracking resistance and self-healing capacity behavior of fine aggregate matrices (FAMs). First, granite, basalt, and mica schist aggregates were subjected to physical, morphological, and mineralogical characterization. Then, three FAMs were fabricated with the same asphalt binder and these different fine aggregates. To evaluate the fatigue cracking resistance and self-healing capacity of the FAMs, frequency sweep and time sweep tests were conducted. The simplified viscoelastic continuum damage (S-VECD) theory was used to interpret the results of those tests. The mineral composition of the aggregates impacted the stiffness and the fatigue life of the FAMs. However, there was no significant influence of the aggregates on the self-healing capacity of the FAMs, since there was no significant increase in the fatigue life of the materials after the resting periods in the time sweep tests.

Downloads

Download data is not yet available.

Author Biographies

Miguel Faé Linhares, Universidade Federal do Espírito Santo (UFES)

PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA CIVIL

Jamilla Emi Sudo Lutif Teixeira, University of Nebraska-Lincoln (UNL)

Department of Civil and Environmental Engineering (CEE)

Verônica Teixeira Franco Castelo Branco, Universidade Federal do Ceará (UFC)

Programa de Pós-Graduação em Engenharia de Transportes (PETRAN)

Wellington Lorran Gaia Ferreira, Universidade Federal Rural do Semi-Arido (UFERSA)

Departamento de Engenharias

References

ABNT (2017) NBR 16605: Cimento portland e outros materiais em pó - Determinação da massa específica. Rio de Janeiro: ABNT.

Abo-Qudais, S. and A. Suleiman (2005) Monitoring fatigue damage and crack healing by ultrasound wave velocity, Nondestructive Testing and Evaluation, v. 20, n. 2, p. 125-45. DOI: 10.1080/10589750500206774. DOI: https://doi.org/10.1080/10589750500206774

Ayar, P.; F. Moreno-Navarro and M.C. Rubio-Gámez (2016) The healing capability of asphalt pavements: a state of the art review, Journal of Cleaner Production, v. 113, p. 28-40. DOI: 10.1016/j.jclepro.2015.12.034. DOI: https://doi.org/10.1016/j.jclepro.2015.12.034

Babadopulos, L.F.; G. Orozco; C. Sauzéat et al. (2019) Reversible phenomena and fatigue damage during cyclic loading and rest periods on bitumen, International Journal of Fatigue, v. 124, p. 303-14. DOI: 10.1016/j.ijfatigue.2019.03.008. DOI: https://doi.org/10.1016/j.ijfatigue.2019.03.008

Cala, A.; S. Caro; M. Lleras et al. (2019) Impact of the chemical composition of aggregates on the adhesion quality and durability of asphalt aggregate systems, Construction & Building Materials, v. 216, p. 661-72. DOI: 10.1016/j.conbuildmat.2019.05.030. DOI: https://doi.org/10.1016/j.conbuildmat.2019.05.030

Castelo Branco, V.T.F.; E. Masad; A. Bhasin et al. (2008) Fatigue analysis of asphalt mixtures independent of mode of loading, Transportation Research Record: Journal of the Transportation Research Board, v. 2057, n. 1, p. 149-56. DOI: 10.3141/2057-18. DOI: https://doi.org/10.3141/2057-18

COD (2021) Available at: <https://www.crystallography.net/cod/> (accessed 03/09/2024).

Daniel, J.S. and Y.R. Kim (2002) Development of a simplified fatigue test and analysis procedure using a viscoelastic, continuum damage model (with discussion), Electronic Journal of the Association of Asphalt Paving Technologists, v. 71, p. 619-50.

Daniel, J.S. and Y.R. Kim (2001) Laboratory evaluation of fatigue damage and healing of asphalt mixtures, Journal of Materials in Civil Engineering, v. 13, n. 6, p. 434-40. DOI: 10.1061/(ASCE)0899-1561(2001)13:6(434). DOI: https://doi.org/10.1061/(ASCE)0899-1561(2001)13:6(434)

DNIT (2006) DNIT 031/06 - ES: Pavimentos flexíveis - Concreto asfáltico - Especificação de serviço. Rio de Janeiro: DNIT.

DNIT (2019) DNIT 411/2019 - ME: Pavimentação asfáltica - Misturas asfálticas - Massa específica, densidade relativa e absorção de agregado miúdo para misturas asfálticas. Rio de Janeiro: DNIT.

Fonseca, J.F.; J.E. Sudo Lutif Teixeira; V.T.F. Castelo Branco et al. (2019) Evaluation of effects of filler by-products on fine aggregate matrix viscoelasticity and fatigue-fracture characteristics, Journal of Materials in Civil Engineering, v. 31, n. 10, p. 04019240. DOI: 10.1061/(ASCE)MT.1943-5533.0002891. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002891

Freire, R.A.; V.T.F. Castelo Branco and K. Vasconcelos (2014) Avaliação da resistência ao trincamento de misturas asfálticas compostas por agregados miúdos com diferentes tamanhos máximos nominais, Revista Transportes, v. 22, n. 3, p. 117-27. DOI: 10.14295/transportes.v22i3.791. DOI: https://doi.org/10.14295/transportes.v22i3.791

Freire, R.A.; L.F. Babadopulos; V.T.F. Castelo Branco et al. (2017) Aggregate maximum nominal sizes’ influence on fatigue damage performance using different scales, Journal of Materials in Civil Engineering, v. 29, n. 8. DOI: 10.1061/(ASCE)MT.1943-5533.0001912. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001912

Ibiapina, D.S.; V.T.F. Castelo Branco; L. Diogenes et al. (2018) Proposição de um sistema de classificação das propriedades de forma de agregados caracterizados com o uso do processamento digital de imagens a partir de materiais oriundos do Brasil, Revista Transportes, v. 26, n. 4, p. 116-28. DOI: 10.14295/transportes.v26i4.1510. DOI: https://doi.org/10.14295/transportes.v26i4.1510

Karki, P.; R. Li and A. Bhasin (2015) Quantifying overall damage and healing behavior of asphalt materials using continuum damage approach, The International Journal of Pavement Engineering, v. 16, n. 4, p. 350-62. DOI: 10.1080/10298436.2014.942993. DOI: https://doi.org/10.1080/10298436.2014.942993

Kim, Y.R.; D. Little and R.L. Lytton (2003) Fatigue and healing characterization of asphalt mixtures, Journal of Materials in Civil Engineering, v. 15, n. 1, p. 75-83. DOI: 10.1061/(ASCE)0899-1561(2003)15:1(75). DOI: https://doi.org/10.1061/(ASCE)0899-1561(2003)15:1(75)

Kim, Y.R.; D. Little and I. Song (2003) Effect of mineral fillers on fatigue resistance and fundamental material characteristics: mechanistic evaluation, Transportation Research Record: Journal of the Transportation Research Board, v. 1832, n. 1, p. 1-8. DOI: 10.3141/1832-01. DOI: https://doi.org/10.3141/1832-01

Klug, A.B.; A. Ng and L.A. Faxina (2022) Application of the viscoelastic continuum damage theory to study the fatigue performance of asphalt mixtures: a literature review, Sustainability, v. 14, n. 9, p. 4973. DOI: 10.3390/su14094973. DOI: https://doi.org/10.3390/su14094973

Li, M.; G. Wu; E. Fini et al. (2020) Investigating the healing capacity of asphalt mixtures containing iron slag, Construction & Building Materials, v. 261, p. 119446. DOI: 10.1016/j.conbuildmat.2020.119446. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119446

Li, R.; P. Karki and P. Hao (2020) Fatigue and self-healing characterization of asphalt composites containing rock asphalts, Construction & Building Materials, v. 230, p. 116835. DOI: 10.1016/j.conbuildmat.2019.116835. DOI: https://doi.org/10.1016/j.conbuildmat.2019.116835

Li, M.; G. Wu; M. Rajib et al. (2023) Investigating the effect of ultraviolet aging on the healing capacity of bitumen containing taconite tailings, Road Materials and Pavement Design, v. 24, n. 1, p. 267-78. DOI: 10.1080/14680629.2021.2012237. DOI: https://doi.org/10.1080/14680629.2021.2012237

Masad, E.; L. Tashman; D. Little et al. (2005) Viscoplastic modeling of asphalt mixes with the effects of anisotropy, damage and aggregate characteristics, Mechanics of Materials, v. 37, n. 12, p. 1242-56. DOI: 10.1016/j.mechmat.2005.06.003. DOI: https://doi.org/10.1016/j.mechmat.2005.06.003

Mazzoni, G.; A. Stimilli and F. Canestrari (2016) Self-healing capability and thixotropy of bituminous mastics. International Journal of Fatigue, v. 92, p. 8-17. DOI: 10.1016/j.ijfatigue.2016.06.028. DOI: https://doi.org/10.1016/j.ijfatigue.2016.06.028

Moreno, F. and M.C. Rubio (2013) Effect of aggregate nature on the fatigue-cracking behavior of asphalt mixes, Materials & Design, v. 47, p. 61-7. DOI: 10.1016/j.matdes.2012.12.048. DOI: https://doi.org/10.1016/j.matdes.2012.12.048

Moura, B.L.R.; J.E.S.L. Teixeira; R. Simão et al. (2020) Adhesion between steel slag aggregates and bituminous binder based on surface characteristics and mixture moisture resistance, Construction & Building Materials, v. 264, p. 120685. DOI: 10.1016/j. conbuildmat.2020.120685. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120685

Ng, A.K.Y.; A.C. Vale; A.C. Gigante et al. (2018) Determination of the binder content of fine aggregate matrices prepared with modified binders, Journal of Materials in Civil Engineering, v. 30, n. 4, p. 04018045. DOI: 10.1061/(ASCE)MT.1943-5533.0002160. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002160

Oliveira, L.S.; L.F. Babadopulos and J.B. Soares (2021) Evolution of asphalt binder stiffness during fatigue loading and rest periods and its impact on fatigue life, International Journal of Fatigue, v. 144, p. 106041. DOI: 10.1016/j.ijfatigue.2020.106041. DOI: https://doi.org/10.1016/j.ijfatigue.2020.106041

Palvadi, S.; A. Bhasin and D. Little (2012) Method to quantify healing in asphalt composites by continuum damage approach, Transportation Research Record: Journal of the Transportation Research Board, v. 2296, n. 1, p. 86-96. DOI: 10.3141/2296-09. DOI: https://doi.org/10.3141/2296-09

Phan, T.M.; D. Park and T.H. Le (2018) Crack healing performance of hot mix asphalt containing steel slag by microwaves heating, Construction & Building Materials, v. 180, p. 503-11. DOI: 10.1016/j.conbuildmat.2018.05.278. DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.278

Pivetta, F.C.; L.A. Nascimento and L.A.T. Brito (2020) Proposta de protocolo de ensaio para análise de regeneração em misturas asfálcas através do modelo S-VECD, Revista Transportes, v. 28, n. 4, p. 38-52. DOI: 10.14295/transportes.v28i4.2028. DOI: https://doi.org/10.14295/transportes.v28i4.2028

Rodrigues, J.A.; J.E.S.L. Teixeira; Y.R. Kim et al. (2019) Crack modeling of bituminous materials using extrinsic nonlinear viscoelastic cohesive zone (NVCZ) model, Construction & Building Materials, v. 204, p. 520-9. DOI: 10.1016/j.conbuildmat.2019.01.215. DOI: https://doi.org/10.1016/j.conbuildmat.2019.01.215

Sánchez, D.B.; J. Grenfell; G. Airey et al. (2017) Evaluation of the degradation of fine asphalt-aggregate mixtures containing high reclaimed asphalt pavement contents, Road Materials and Pavement Design, v. 18, n. sup2, p. 91-107. DOI: 10.1080/14680629.2017.1304250. DOI: https://doi.org/10.1080/14680629.2017.1304250

Shen, S.; H.M. Chiu and H. Huang (2010) Characterization of fatigue and healing in asphalt binders, Journal of Materials in Civil Engineering, v. 22, n. 9, p. 846-52. DOI: 10.1061/(ASCE)MT.1943-5533.0000080. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000080

Underwood, B.S.; C. Baek and Y.R. Kim (2012) Simplified viscoelastic continuum damage model as platform for asphalt concrete fatigue analysis, Transportation Research Record: Journal of the Transportation Research Board, v. 2296, n. 1, p. 36-45. DOI: 10.3141/2296-04. DOI: https://doi.org/10.3141/2296-04

Vasconcelos, K.L.; A. Bhasin and D. Little (2010) Influence of reduced production temperatures on the adhesive properties of aggregates and laboratory performance of fine aggregate-asphalt mixtures, Road Materials and Pavement Design, v. 11, n. 1, p. 47-64. DOI: 10.1080/14680629.2010.9690259. DOI: https://doi.org/10.3166/rmpd.11.47-64

Xu, G. and H. Wang (2016) Study of cohesion and adhesion properties of asphalt concrete with molecular dynamics simulation, Computational Materials Science, v. 112, p. 161-9. DOI: 10.1016/j.commatsci.2015.10.024. DOI: https://doi.org/10.1016/j.commatsci.2015.10.024

Zhang, J.; A.K. Apeagyei; G.D. Airey et al. (2015) Influence of aggregate mineralogical composition on water resistance of aggregate– bitumen adhesion, International Journal of Adhesion and Adhesives, v. 62, p. 45-54. DOI: 10.1016/j.ijadhadh.2015.06.012. DOI: https://doi.org/10.1016/j.ijadhadh.2015.06.012

Downloads

Published

2024-08-19

How to Cite

Faé Linhares, M., Emi Sudo Lutif Teixeira, J., Teixeira Franco Castelo Branco, V., & Gaia Ferreira, W. L. (2024). Effect of different types of fine aggregates on fatigue resistance and self-healing of fine aggregate asphalt matrices. TRANSPORTES, 32(2), e2997. https://doi.org/10.58922/transportes.v32i2.2997

Issue

Section

Artigos