Modelagem matemática para o problema de localização de centros de distribuição de empresa de alimentos

Authors

  • Cauê Sauter Guazzelli Universidade de São Paulo
  • Claudio Barbieri da Cunha

DOI:

https://doi.org/10.14295/transportes.v22i3.767

Keywords:

Optimization of logistic networks. Economies of scale. Location of distribution centers.

Abstract

In this paper we propose a mathematical model for a real-world problem of locating distribution centers for a food industry in Latin America. Our model aims to properly represent the peculiarities of the logistics operation that are not usually considered in the scientific literature. More specifically we propose a mixed integer programming model that considers multiple products, multiple layers (with transfer between units of the same layer allowed), cross-docking points, capacity constraints and fixed and variable costs for facilities, as well as economies of scale due to the size of the distribution centers. The model aims to determine the best locations and sizes for these logistic facilities, as well as the transport flows among them, in order to minimize the total operating cost. We also present the results for real-world scenarios for the company, which reflect different levels of service and their associated costs. These outputs are compared to the base scenario, thus allowing trade-offs to be analyzed. The results allowed savings in operational costs up to 8.3%, with levels of services close to the actual ones. These outcomes are considered expressive given the low profit margins of the sector and the high logistics costs when compared to the final prices.

Downloads

Download data is not yet available.

References

Aghezzaf, E. (2005) Capacity planning and warehouse location in supply chains with uncertain demands. Journal of the Operational Research Society, v. 56, n. 4, p. 453–462. DOI:10.1057/palgrave.jors.2601834.

Altiparmak, F., Gen, M., Lin, L., Paksoy, T., Seo, Y., Takahashi, K., e Park, J. (2006) A genetic algorithm approach for multi-objective optimization of supply chain networks. Computers & Industrial Engineering, v. 51, n. 1, p. 196–215. DOI:10.1016/j.cie.2006.07.011.

Ballou, R. (2001) Unresolved issues in supply chain network design. Information Systems Frontiers, v. 3, n. 4, p. 417–426. DOI:10.1023/A:1012872704057.

Baumgartner, K., Fuetterer, A., e Thonemann, U. W. (2012) Supply chain design considering economies of scale and transport frequencies. European Journal of Operational Research, v. 218, n. 3, p. 789–800. DOI:10.1016/j.ejor.2011.11.032.

Brandeau, M., e Chiu, S. (1989) An Overview of Repre-sentative Problems in Location Research. Management Science, v. 35, p. 645–674. DOI:10.1287/mnsc.35.6.645.

Carlsson, D., e Rönnqvist, M. (2005) Supply chain man-agement in forestry––case studies at Södra Cell AB. European Journal of Operational Research, v. 163, n. 3, p. 589–616. DOI:10.1016/j.ejor.2004.02.001.

Cordeau, J. F., Pasin, F., e Solomon, M. M. (2006) An integrated model for logistics network design. Annals of Operations Research, v. 144, n. 1, p. 59–82. DOI: 10.1007/s10479-006-0001-3.

Cunha, C. B. (2006) Contribuição à modelagem de problemas em logistica e transportes. Tese (Livre Docência). Escola Politécnica da Universidade de São Paulo. São Paulo.

Current, J., Daskin, M., e Schilling, D. (2002) Discrete Network Location Models. Z. Drezner & H. Hamacher (Eds), Facility Location: Applications and Methods (pp. 81–118). Springer-Verlag, Berlin.

Daskin, M. (1995) Network and Discrete Location: Mod-els, Algorithms, and Applications. (p. 520). Wiley-Interscience.

Drezner, Z. (2004) Facility Location: Applications and Theory. (2nd ed., p. 458). Springer.

Fleischmann, B. (1993) Designing distribution systems with transport economies of scale. European Journal of Operational Research, v. 70, n. 1, p. 31–42. DOI: 10.1016/0377-2217(93)90230-K.

Gurobi Optimization, I. (2014) Gurobi Optimizer Referen-ce Manual. Obtido de http://www.gurobi.com

Hinojosa, Y., Kalcsics, J., Nickel, S., Puerto, J., e Velten, S. (2008) Dynamic supply chain design with inventory. Computers & Operations Research, v. 35, n. 2, p. 373–391. DOI:10.1016/j.cor.2006.03.017.

Hinojosa, Y., Puerto, J., e Fernández, F. R. (2000) A multiperiod two-echelon multicommodity capacitated plant location problem. European Journal of Operational Research, v. 123, n. 2, p. 271–291. DOI:10.1016/S0377-2217(99)00256-8.

Jayaraman, V., e Pirkul, H. (2001) Planning and coordi-nation of production and distribution facilities for multiple commodities. European Journal of Operational Research, v. 133, n. 2, p. 394–408. DOI:10.1016/S0377-2217(00)00033-3.

Keskin, B. B., e Üster, H. (2007) Meta-heuristic ap-proaches with memory and evolution for a multi-product production/distribution system design problem. European Journal of Operational Research, v. 182, n. 2, p. 663–682. DOI:10.1016/j.ejor.2006.07.034.

Klose, A., e Drexl, A. (2005) Facility location models for distribution system design. European Journal of Opera-tional Research, v. 162, n. 1, p. 4–29. DOI: 10.1016/j.ejor.2003.10.031.

Lee, D. H., e Dong, M. (2008) A heuristic approach to logistics network design for end-of-lease computer products recovery. Transportation Research Part E: Logistics and Transportation Review, v. 44, n. 3, p. 455–474. DOI:10.1016/j.tre.2006.11.003.

Levén, E., e Segerstedt, A. (2004) Polarica’s wild berries: an example of a required storage capacity calculation and where to locate this inventory. Supply Chain Management: An International Journal, v. 9, n. 3, p. 213–218. DOI:10.1108/13598540410544908.

Mazzola, J. B., e Neebe, A. W. (1999) Lagrangian-relaxation-based solution procedures for a multiproduct capacitated facility location problem with choice of facility type. European Journal of Operational Research, v. 115, n. 2, p. 285–299. DOI:10.1016/S0377-2217(98)00303-8.

Melkote, S., e Daskin, M. S. (2001) Capacitated facility location/network design problems. European Journal of Operational Research, v. 129, n. 3, p. 481–495. DOI: 10.1016/S0377-2217(99)00464-6.

Melo, M., Nickel, S., e Saldanha-Da-Gama, F. (2009) Facility location and supply chain management–A review. European Journal of Operational Research, v. 196, n. 2, p. 401–412. DOI:10.1016/j.ejor.2008.05.007.

Melo, M. T., Nickel, S., e Saldanha da Gama, F. (2006) Dynamic multi-commodity capacitated facility location: a mathematical modeling framework for strategic supply chain planning. Computers & Operations Research, v. 33, n. 1, p. 181–208. DOI:10.1016/j.cor.2004.07.005.

Mirchandani, P., e Francis, R. (1990) Discrete location theory. Wiley, New York.

Novaes, A. (1989) Sistemas logísticos: transporte, arma-zenagem e distribuição física de produtos. (p. 372). Edgard Blücher, São Paulo.

Pati, R., Vrat, P., e Kumar, P. (2008) A goal programming

model for paper recycling system. Omega, v. 36, n. 3, p. 405–417. DOI:10.1016/j.omega.2006.04.014.

ReVelle, C., e Eiselt, H. (2005) Location analysis: A syn-thesis and survey. European Journal of Operational Research, v. 165, n. 1, p. 1–19. DOI: 10.1016/ j.ejor.2003.11.032.

ReVelle, C., Eiselt, H., e Daskin, M. (2008) A bibliography for some fundamental problem categories in discrete location science. European Journal of Operational Research, v. 184, n. 3, p. 817–848. DOI:10.1016/ j.ejor.2006.12.044.

Şahin, G., e Süral, H. (2007) A review of hierarchical facility location models. Computers & Operations Re-search, v. 34, p. 2310–2331. DOI: 10.1016/ j.cor.2005.09.005.

Sridharan, R. (1995) The capacitated plant location problem. European Journal of Operational Research, v. 87, n. 2, p. 203–213. DOI:10.1016/0377-2217(95)00042-O.

Syam, S. S. (2002) A model and methodologies for the location problem with logistical components. Computers & Operations Research, v. 29, n. 9, p. 1173–1193. DOI:10.1016/S0305-0548(01)00023-5.

Troncoso, J. J., e Garrido, R. A. (2005) Forestry produc-tion and logistics planning: an analysis using mixed-integer programming. Forest Policy and Economics, v. 7, n. 4, p. 625–633. DOI:10.1016/j.forpol.2003.12.002.

Tüshaus, U., e Wittmann, S. (1998) Strategic logistic planning by means of simple plant location: A case study. Advances in distribution logistics (pp. 241–263). Springer, Berlin. DOI:10.1007/978-3-642-46865-0_10.

Vila, D., Martel, A., e Beauregard, R. (2006) Designing logistics networks in divergent process industries: A methodology and its application to the lumber industry. International Journal of Production Economics, v. 102, n. 2, p. 358–378. DOI:10.1016/j.ijpe.2005.03.011.

Wang, Q., Batta, R., Bhadury, J., e Rump, C. (2003) Budget constrained location problem with opening and closing of facilities. Computers & Operations Research, v. 30, n. 13, p. 2047–2069. DOI:10.1016/S0305-0548(02)00123-5.

Wouda, F., Beek, P. van, Vorst, J. van der, e Tacke, H. (2002) An application of mixed-integer linear program-ming models on the redesign of the supply network of Nutricia Dairy & Drinks Group in Hungary. Or Spectrum, v. 24, n. 4, p. 449–465. DOI:10.1007/s002910200112.

Xu, S. (2013) Transport economies of scale and firm location. Mathematical Social Sciences, v. 66, n. 3, p. 337–345. DOI:10.1016/j.mathsocsci.2013.07.004.

Yang, Z., Chu, F., e Chen, H. (2012) A cut-and-solve based algorithm for the single-source capacitated facility location problem. European Journal of Operational Research, v. 221, n. 3, p. 521–532. DOI:10.1016/ j.ejor.2012.03.047.

Published

2014-10-07

How to Cite

Guazzelli, C. S., & da Cunha, C. B. (2014). Modelagem matemática para o problema de localização de centros de distribuição de empresa de alimentos. TRANSPORTES, 22(3), 86–102. https://doi.org/10.14295/transportes.v22i3.767

Issue

Section

Artigos