Calibração do modelo de consumo de combustível do simulador AIMSUN com dados coletados via OBD

Autores

  • Arthur Theodoro Marinho Universidade Federal de Santa Catarina
  • Renan Artur Lopes Eccel Universidade Federal de Santa Catarina
  • Rodrigo Castelan Carlson Universidade Federal de Santa Catarina
  • Werner Kraus Junior Universidade Federal de Santa Catarina

DOI:

https://doi.org/10.14295/transportes.v26i2.1393

Palavras-chave:

OBD, Modelagem, Consumo de Combustível, Microssimulação de Tráfego.

Resumo

Dados coletados por meio da interface de diagnóstico de bordo (On-Board Diagnostics ‒ OBD), presente nos automóveis nacionais fabricados a partir de 2009, foram usados na calibração de modelo microscópico de consumo de combustível do simulador AIMSUN. Para a calibração dos parâmetros do modelo de consumo, mediu-se a velocidade instantânea, o fluxo de ar de admissão e o teor de oxigênio na mistura ar/combustível. Calibrou-se o modelo de consumo do simulador seguindo a abordagem modal, usando regressão para os modos de aceleração e velocidades constantes e média simples para os modos de marcha lenta e desaceleração. Para validar o modelo, os consumos de combustível medido e estimado foram comparados em ciclos de condução em áreas urbanas. Os resultados indicam a adequação do método para avaliação do consumo de combustível por veículos em malhas viárias urbanas. Além disso, o modelo calibrado com dados do OBD de quatro tipos de veículos foi usado no estudo por simulação de cenários atual e futuro no contexto de projeto de ampliação viária. Por meio de abordagem comparativa entre cenários, mostra-se que a estimação com parâmetros calibrados produz indicadores distintos e mais confiáveis em relação aos obtidos com os parâmetros originais do simulador.  

Downloads

Não há dados estatísticos.

Biografia do Autor

Arthur Theodoro Marinho, Universidade Federal de Santa Catarina

Programa de Pós-Graduação em Engenharia de Automação e Sistemas

Renan Artur Lopes Eccel, Universidade Federal de Santa Catarina

Programa de Pós-Graduação em Engenharia de Automação e Sistemas

Rodrigo Castelan Carlson, Universidade Federal de Santa Catarina

Programa de Pós-Graduação em Engenharia de Automação e Sistemas

Werner Kraus Junior, Universidade Federal de Santa Catarina

Programa de Pós-Graduação em Engenharia de Automação e Sistemas

Referências

ABNT (2010) NBR 7024 – Veículos Rodoviários Automotores Leves – Medição do Consumo de Combustível – Método de Ensaio. Associação Brasileira de Normas Técnicas, Rio de Janeiro.

ABNT (2012) NBR 6601 – Veículos Rodoviários Automotores Leves – Determinação de Hidrocarbonetos, Monóxido de Carbono, Óxidos de Nitrogênio, Dióxido de Carbono e Material Particulado no Gás de Escapamento. Associação Brasileira de Normas Técnicas, Rio de Janeiro.

Ahn, K. (1998) Microscopic Fuel Consumption and Emission Modeling. Dissertation (Master in Civil and Enviromental Enge-neering) – Faculty of the Virginia Polytechnic Institute and State University. Virginia, EUA.

Akçelik, R. (1983) Progress in Fuel Consumption Modelling for Urban Traffic Management. Australian Road Research Board. Report ARR 124. Vermont South, Austrália, p. 51–56. ISSN 0518–0728. Disponível em: http://www.sidrasolutions.com/Cms_Data/Contents/SIDRA/Folders/Resources/Articles/Articles/~contents/DP42CMSR2F37U597/Akcelik_ARR124_FuelConsumption.PDF

Akçelik, R. e M. Besley (2003) Operational Cost, Fuel Consumption, and Emission Models in aaSIDRA and aaMOTION. 25th Conference of Australian Institutes of Transport Research. Adelaide, Austrália. Disponível em: http://www.sidrasolutions.com/documents/AKCELIK_COSTModels(CAITR%202003)v2.pdf

Alessandrini, A.; F. Filippi e F. Ortenzi (2004) Consumption Calculating of Vehicles Using OBD Data. Centre for Transprtation and Logistics. Roma. Disponível em: https://pdfs.semanticscholar.org/997e/d8cbf734a31cf45c8143115bc0880a48ef9e.pdf

An, F.; R. Earley e L. Green-Weiskel (2011) Global Overview on Fuel Efficiency and Motor Vehicle Emission Standards: Policy Options and Perspectives for International Cooperation. Commission on Sustainable Development Report. Nova Iorque, EUA, p. 22. Disponível em: https://cleanenergysolutions.org/es/resources/global-overview-fuel-efficiency-motor-vehicle-emission-standards-policy-options

André, M.; R. Joumard; R. Vidon; P. Tassel e P. Perret (2005) Real–World European Driving Cycles, for Measuring Pollutant Emissions from high- and low-powered cars. Laboratory Transport and Environment, INRETS. França, v. 40, p. 5944–5953. DOI: 10.1016/j.atmosenv.2005.12.057

ANFAVEA - Associação Nacional dos Fabricantes de Veículos Automotores (2016) Estatística de produção, vendas e exportação de automóveis. São Paulo. Disponível em: http://www.anfavea.com.br/estatisticas-2016.html (Acesso em 10 fev. 2017)

Baltusis, P. (2004) On Board Vehicle Diagnostics. Convergence International Congress & Exposition on Transportation Electronics. SAE Technical Paper No. 2004–21–0009. Disponível em: https://www.sae.org/publications/technical-papers/content/2004-21-0009/

Barlow, T.; S. Latham; I. McCrae e P. Boulter (2009) A Reference Book of Driving Cycles for Use in the Measurement of Road Vehicle Emissions. TRL Published Project Report. Wokingham, Reino Unido. Disponível em: <https://trl.co.uk/reports/PPR354>

Chai, T. e R. Draxler (2014) Mean Square Error (RMSE) or Mean Absolute Error (MAE) – Arguments Against Avoiding RMSE in the Literature. Geoscientific Model Development, v.7, p.1247–1250. DOI: 10.5194/gmd-7-1247-2014

CONAMA (2004) Resolução n. 354, de 13 de dezembro de 2004. Dispõe Sobre os Requisitos para Adoção de Sistemas de Diagnose de Bordo – OBD nos Veículos Automotores Leves Objetivando Preservar a Funcionalidade dos Sistemas de Controle de Emissão. Diário Oficial da República Federativa do Brasil. Brasília, n. 239.

CIMA (2015) Portaria n. 75, de 5 de março de 2015. Dispõe Sobre Fixar o Porcentual Obrigatório de Adição de Etanol Anidro Com-bustível à Gasolina. Conselho Interministerial do Açúcar e do Álcool. Diário Oficial da União. Brasília, n. 44.

Ferreira, L. J. A. (1982) Car Fuel Consumption in Urban Traffic: The Results of a Survey in Leeds Using Instrumented Vehicles. Institute of Transport Studies, Universidade de Leeds, Inglaterra, p. 77. Disponível em: http://eprints.whiterose.ac.uk/2376/

FISPQ (2014) Gasolina Especial BR E27. Ficha de Informação de Segurança de Produto Químico. Petrobrás Distribuidora S.A. Rio de Janeiro, p.14.

Fonseca, H.; C. Ferreira e T. Fernandes (2012) New Methodologies to Measure in Real Time Fuel Consumption of Internal Combustion Engines. International Conference on Experimental Mechanics. Leiria, Portugal. Disponível em: https://www.researchgate.net/publication/261872468

Franco, V.; M. Kousoulidou; M. Muntean; L. Ntziachristos; S. Hausberger e P. Dilara (2013) Road Vehicle Emission Factors Development: A Review. Atmospheric Environment, n.70, p.84–97. DOI: 10.1016/j.atmosenv.2013.01.006

Gomes, C. (2016) Calibração de Motores - Apresentação em Power-point. Curso SAE Brasil. São Paulo. 316 slides. Disponível em: http://saebrasil.org.bra2016cLinkcalibracaomotores.zip (Acesso em: 27/07/2016)

Hickman, A. (1988) Methodology for Calculating Transport Emissions and Energy Consumption. Transport Research Laboratory – Project Report SE/491/98. Reino Unido, p. 362. Disponível em: https://trimis.ec.europa.eu/project/methodology-calculating-transport-emissions-and-energy-consumption#tab-outline

Lai, J.; L. Yu; G. Song; P. Guo e X. Chen (2013) Development of City-Specific Driving Cycles for Transit Buses Based on VSP Distributions: Case of Beijing. Journal of Transport Engineering. Pequim, China, v. 139, p. 749–757. ISSN 0733–947X. DOI: 10.1061/(ASCE)TE.1943-5436.0000547

Liu, J.; X. Wang e A. Khattak (2016) Customizing Driving Cycles to Support Vehicle Purchase and Use Decisions: Fuel Econo-my Estimation for Alternative Fuel Vehicle Users. Transportation Research Part C: Emerging Technologies, p. 281–298. DOI: 10.1016/j.trc.2016.02.016

Marinho, A. T. (2016) Calibração de Modelos de Consumo de Combustível para Microssimulação de Tráfego com Dados Coletados Via OBD. Dissertação (Mestrado em Engenharia de Automação e Sistemas) Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brasil.

Nanduri, K. (2013) Mitigating Emissions and Energy Consumption for Urban Transportation Networks: Simulation-Based Signal Control Strategies. Dissertation (Master in Transportation). Massachusetts Institute of Technology. Massachussetts, USA.

Osorio, C. e K. Nanduri (2015) Energy-Efficient Urban Traffic Management: A Microscopic Simulation-Based Approach. Transportation Science. v. 49, n. 3, p 637–651. ISSN 1526–5447. DOI:10.1287/trsc.2014.0554

Owens, R. e M. Laughlin (2016) Case Study – Idling Reductions Technologies for Emergency Service Vehicles. U.S. Department of Energy. Chicago, EUA, p. 36. Disponível em: https://anl.box.com/s/hfg7oetq9b7auer0ehz17ojf5gdvvzjv

Sbayti, H. e D. Roden (2010) Best Practices in the Use of Micro Simulation Models. Transportation Research Board Report. Arlington, EUA, p. 81. Disponível em: http://statewideplanning.org/wp-content/uploads/259_NCHRP-08-36-90.pdf

Thibault, L.; P. Degeilh; O. Lepreux; L. Voise; G. Alix e G. Corde (2016) A new GPS-based method to estimate real driving emis-sions. IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). Rueil-Malmaison, França. ISSN 2153–0017. DOI: 10.1109/ITSC.2016.7795776

TSS (2015) Manual do Usuário do Simulador AIMSUN. Transport Simulation Systems. Barcelona, Espanha, p. 393–396.

Ulsoy, G.; H. Peng e M. Çakmaci (2012) Automotive Control Systems. Cambridge University Press. New York, USA.

Watson, H. (1973) Influence of Driving Patterns on Localized Urban Emissions Source. SAE Technical Paper. n. 730556. EUA, p. 15. DOI: 10.4271/730556

Downloads

Publicado

31-08-2018

Como Citar

Marinho, A. T., Eccel, R. A. L., Carlson, R. C., & Kraus Junior, W. (2018). Calibração do modelo de consumo de combustível do simulador AIMSUN com dados coletados via OBD. TRANSPORTES, 26(2), 139–154. https://doi.org/10.14295/transportes.v26i2.1393

Edição

Seção

Artigos