Iron ore tailings as fine mineral aggregate in asphalt mixtures
DOI:
https://doi.org/10.14295/transportes.v29i4.2391Keywords:
Asphalt mixtures, Fine aggregate matrices, Iron ore tailingsAbstract
The growing mineral production generates gradually higher volumes of solid waste, motivating studies to be carried out to enable the use of this waste in several fields. The main objective of this paper is to evaluate the use of iron ore tailings (IOT) from flotation process (which resembles fine sand) in the composition of asphalt mixtures. Asphalt mixtures and fine aggregate matrices (FAMs) were produced with gneiss aggregates and IOT. The asphalt mixtures were evaluated by means of tensile strength test and moisture-induced damage test. The FAMs were subjected to fatigue tests in the dynamic shear rheometer, and fatigue models were built for non-conditioned and moisture-conditioned specimens. The greater adhesiveness of the asphalt binder to the IOT provided greater tensile strength to the asphalt mixtures and increased the fatigue life of the moisture-conditioned FAM specimens. The overall conclusion is that the asphalt mixtures and the FAMs prepared with IOT showed lower moisture susceptibility.
Downloads
References
AASHTO T 209 (2012) Method of test for theoretical maximum specific gravity (Gmm) and density of hot mix asphalt (HMA). American Association of State Highway and Transportation Officials.
Agência Nacional de Mineração - ANM. (2020) Anuário Mineral Brasileiro: Principais Substâncias Metálicas. v. 1, 37 p.
Apaza, F. R.; A. C. R. Guimarães; M. A. S. Sousa e C. D. Castro (2018) Estudo sobre a utilização de Resíduo de Minério de Ferro em microrrevestimento asfáltico. Transportes, v. 26, n. 2, p. 118–138. DOI:10.14295/transportes.v26i2.1254.
Arambula, E.; E. Masad e A. Martin (2007) Moisture Susceptibility of Asphalt Mixtures with Known Field Performance: Eval-uated with Dynamic Analysis and Crack Growth Model. Transportation Research Record: Journal of the Transportation Re-search Board, v. 2001, p. 20–28. DOI:10.3141/2001-03
ASTM D4867 (2009) Standard test method for effect of moisture on asphalt concrete paving mixtures. American Society for Testing and Materials.
ASTM D6926 (2013) Standard practice for preparation of asphalt mixture specimens using Marshall apparatus. American Socie-ty for Testing and Materials.
ASTM D6307 (2019) Standard test method for asphalt content of asphalt mixture by ignition method. American Society for Testing and Materials.
ASTM D6373 (2016) Standard specification for performance graded asphalt binder. American Society for Testing and Materials.
Bastos, L. A. de C. et al. (2016) Using iron ore tailings from tailing dams as road material. Construction and Building Materials, v. 112, n. 10, p. 988–995. DOI: 10.1061/(ASCE)MT.1943-5533.0001613.
Bhasin, A. (2006) Development of Methods to Quantify Bitumen-Aggregate Adhesion and Loss of Adhesion Due to Water. 2006. 146 p. Dissertation (PhD) Texas A&M Unversity. Austin. 2006. Disponível em: <https://core.ac.uk/download/pdf/4272833.pdf> (acesso em 17/08/2021).
Campanha, Â. (2011) Caracterização dos rejeitos de minério de ferro para uso em pavimentação. 2011. 90 p. Thesis (MSc) - Universidade Federal de Viçosa, Viçosa.. Disponível em: <https://www.locus.ufv.br/handle/123456789/3752> (acesso em 07/09/2021).
Campos, B. K. C. e F. B. Santos (2017) Análise do Comportamento Mecânico de Misturas Asfálticas Com Adição do Rejeito de Flo-tação de Minério de Ferro. 2017. 215 p. Trabalho Final de Graduação (Engenharia da Mobilidade) - Universidade Federal de Itajubá, Campus Itabira, Itabira.
Cala, A.; S. Caro; M. Lleras e Y. Rojas-Agramonte (2019) Impact of the chemical composition of aggregates on the adhesion quality and durability of asphalt-aggregate systems. Construction and Building Materials, v. 216, p. 661–672. DOI: 10.1016/j.conbuildmat.2019.05.030.
Caro, S. et al. (2008a) Probabilistic Analysis of Fracture in Asphalt Mixtures Caused by Moisture Damage. Transportation Research Record: Journal of the Transportation Research Board, v. 2057, n. Table 1, p. 28–36. DOI: 10.3141/2057-04.
Caro, S. et al. (2008b) Moisture susceptibility of asphalt mixtures, Part 1: Mechanisms. International Journal of Pavement
Engineering, v. 9, n. 2, p. 81–98. DOI: 10.1080/10298430701792128.
Caro, S. et al. (2012) Analysis of moisture damage susceptibility of warm mix asphalt (WMA) mixtures based on Dynamic Mechanical Analyzer (DMA) testing and a fracture mechanics model. Construction and Building Materials, v. 35, p. 460–467. DOI: 10.1016/j.conbuildmat.2012.04.035
Castelo Branco, V. et al. (2008) Fatigue Analysis of Asphalt Mixtures Independent of Mode of Loading. Transportation Re-search Record: Journal of the Transportation Research Board, v. 2057, p. 149–156. DOI: 10.3141/2057-18.
Coutinho, R.P. et al. (2010) Multiscale approach for characterization of asphaltic materials designed in Brazil and Spain. 11th International Conference on Asphalt Pavements – ISAP, Japan.
Coutinho, R. P. (2012) Utilização da parte fina de misturas asfálticas para avaliação do dano por fadiga. 2012. 96 p. Thesis (MSc) – Departamento de Engenharia de Transportes, Universidade Federal do Ceará, Fortaleza. Disponível em: <http://www.repositorio.ufc.br/handle/riufc/4888> (acesso em 17/08/2021).
DNIT 031 - ES (2006) Pavimentação Asfáltica – Concreto Asfáltico – Especificação de Serviço. Departamento Nacional de Infra-estrutura de Transportes, Rio de Janeiro.
DNIT 095 - EM (2006) Cimentos asfálticos de petróleo – Especificação de material. Departamento Nacional de Infraestrutura de Transportes, Rio de Janeiro.
Fernandes, G. (2005) Comportamento de Estruturas de Pavimentos Ferroviários com a Utilização de Solos Finos e/ou Resíduo de Mineração de Ferro Associados a Geossintéticos. 2005. 253 p. Dissertation (PhD) - Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília.
Fonseca, J. F. et al. (2019) Evaluation of Effects of Filler By-Products on Fine Aggregate Matrix Viscoelasticity and Fatigue-Fracture Characteristics. Journal of Materials in Civil Engineering, v. 31, n. 10, p. 04019240. DOI: 10.1061/(ASCE)MT.1943-5533.0002891.
Freire, R. A. et al. (2017) Aggregate Maximum Nominal Sizes’ Influence on Fatigue Damage Performance Using Different Scales. Journal of Materials in Civil Engineering, v. 29, n. 8, p. 04017067. DOI: 10.1061/(ASCE)MT.1943-5533.0001912
Galhardo, D. C. (2015) Estudo sobre a viabilidade técnica da utilização de rejeitos de mineração de ferro em camadas de pavimen-tos rodoviários. 2015. 186 p. Thesis (MSc) - Instituto Militar de Engenharia, Rio de Janeiro, Disponível em: <https://bdex.eb.mil.br/jspui/handle/123456789/7882> (acesso em 07/09/2021).
Grasson Filho, A. (2019) Evaluation of the specific surface method as a tool to determine the asphalt content of fine aggregate matrices (FAM). 2017. 75 p. Thesis (MSc) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos. Disponível em: <https://www.Dissertations.usp.br/Dissertations/disponiveis/18/18143/tde-16122019-141054/pt-br.php> (acesso em 17/08/2021).
Gudipudi, P. e B. S. Underwood (2015) Testing and Modeling of Fine Aggregate Matrix and Its Relationship to Asphalt Con-crete Mix. Transportation Research Record: Journal of the Transportation Research Board, v. 2507, p. 120–127. DOI: 10.3141/2507-13.
Gudipudi, P. e B. S. Underwood (2017) Use of Fine Aggregate Matrix Experimental Data in Improving Reliability of Fatigue Life Prediction of Asphalt Concrete. Transportation Research Record: Journal of the Transportation Research Board, v. 2631, p. 65–73. DOI: 10.3141/2631-07.
Karki, P.; R. Li e A. Bhasin (2015) Quantifying overall damage and healing behaviour of asphalt materials using continuum damage approach. International Journal of Pavement Engineering, v. 16, n. 4, p. 350–362. Disponível em: <https://www.tandfonline.com/doi/abs/10.1080/10298436.2014.942993> (acesso em 17/08/2021). DOI: 10.1080/10298436.2014.942993.
Kim, Y. e D. N. Little (2005) Development of Specification-Type Tests to Assess the Impact of Fine Aggregate and Mineral Filler on Fatigue Damage. Federal Highway Administration, U.S. Department of Transportation and Texas Transportation Institute, 116 p.
Kim, Y.; D. Little e I. Song (2003) Effect of Mineral Fillers on Fatigue Resistance and Fundamental Material Characteristics: Mechanistic Evaluation. Transportation Research Record: Journal of the Transportation Research Board, v. 1832, n. 03, p. 1–8, 2003. DOI:10.3141/1832-01.
Klug, A. B. (2017) Evaluation of the fatigue performance of fine aggregate matrices prepared with reclaimed asphalt pavements and shale oil residue. 2017. 162 p. Thesis (Master in Science) - Departamento de Engenharia de Transportes, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, SP. Disponível em: <https://www.Dissertations.usp.br/Dissertations/disponiveis/18/18143/tde-19022018-112755/en.php> (acesso em 17/08/2021).
Kommidi, S. R. e Y.R. Kim (2019) Fatigue characterization of binder under the influence of aging in two length scales: sand asphalt mortar and parallel plate binder film. In: Transportation Research Board. Washington, DC. DOI: 10.1016/j.conbuildmat.2019.117588.
Kumar B. N. S.; R. Sushas; S. U. Shet e J. M. Srishaila (2014) Utilization of iron ore tailings as replacement to fine aggregates in cement concrete pavements. International Journal of Research in Engineering and Technology, v. 03. DOI: 10.15623/ijret.2014.0307063.
Masad, E. et al. (2006) Characterization of hma moisture damage using surface energy and fracture properties. Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions, v. 75. Disponível em: < https://trid.trb.org/view/798239> (acesso em 7/08/2021).
Moura, B. L. Riz de.et al. (2019) Avaliação da adesividade ligante-escória de alto-forno resfriada ao ar (ACBFS) e de aciaria (LD) usando técnicas de análise de superficies. In: 33° Congresso de Pesquisa e Ensino em Transportes da ANPET. Anais… Balneário Camboriú, 2019. p. 1799-1811. Disponível em: <https://anpet.org.br/anais/documentos/2019/Infraestrutura/Materiais%20e%20Tecnologias%20Ambientais%20I/2_275_AC.pdf> (acesso em 17/08/2021).
Nascimento L. A. H. et al. (2014) Uso da mecânica do dano contínuo na caracterização de misturas asfálticas brasileiras. In: 21º Encontro de Asfalto, 2014, IBP, Rio de Janeiro.
Ng, A. K. Y. (2017) Avaliação do comportamento ao dano por fadiga de matrizes de agregado fino preparadas com ligantes asfál-ticos modificados. 2017. 201 p. Dissertation (PhD) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos. Disponível em: <https://Dissertations.usp.br/Dissertations/disponiveis/18/18143/tde-03012018-122026/pt-br.php> (acesso em 17/08/2021).
Oliveira, I. C. S. de. (2017) Estudo da adição do rejeito de flotação de minério de ferro em dosagem de misturas asfálticas. 2017. 73 p. Trabalho Final de Graduação (Engenharia da Mobilidade) - Universidade Federal de Itajubá, Campus Itabira, Itabira.
Palvadi, N. S. (2011) Measurement of material properties related to self-healing based on continuum and micromechanics ap-proach. 2011. 87 p. Thesis (MSc) - Texas A&M University, Austin. Disponível em: < https://repositories.lib.utexas.edu/handle/2152/ETD-UT-2011-08-4274> (acesso em 17/08/2021).
Palvadi, S.; A. Bhasin e D. N. Little (2012) Method to quantify healing in asphalt composites by continuum damage approach. Transportation Research Record: Journal of the Transportation Research Board, v. 2296, n. 1, p. 86–96. Disponível em: <https://journals.sagepub.com/doi/abs/10.3141/2296-09> (acesso em 17/08/2021). DOI: 10.3141/2296-0.
Prowell, B. D.; J. Zhang e E. R. Brown (2005) Aggregate Properties and the Performance of Superpave Designed Hot Mix Asphalt. Report NCHRP-539, National Cooperative Highway Research Program. National Research Council. Washington, D.C.
Rodrigues, J. A. et al. (2019) Crack modeling of bituminous materials using extrinsic nonlinear viscoelastic cohesive zone (NVCZ) model. Construction and Building Materials, v. 204, p. 520-529. DOI: 10.1016/j.conbuildmat.2019.01.215.
Sant’ana Filho, J. N. et al. (2017) Technical and environmental feasibility of interlocking concrete pavers with iron ore tailings from tailings dams. Journal of Materials in Civil Engineering, v. 29, n. 9. DOI: 10.1061/(ASCE)MT.1943-5533.0001937
Silva, F. L.; F. G. S. Araújo; C. G. Castro e F. L. V. Kruger (2015) Results of the leaching, water absorption and mold release for-concrete blocks with the addition of the concentration tailings of iron ore. Materials Science Forum (Online), v. 820, p. 549-552. DOI: 10.4028/www.scientific.net/MSF.820.549.
Silva, R. G. O e G. Fernandes (2013) Estudo laboratorial do desempenho mecânico de misturas asfálticas com escória de acia-ria e resı́duos industriais de minério de ferro. Revista Pavimentação, v. VIII, p. 44-52.
Sousa, P. et al. (2013) New design method of fine aggregates mixtures and automated method for analysis of dynamic
mechanical characterization data. Construction and Building Materials, v. 41, p. 216–223. DOI: 10.1016/j.conbuildmat.2012.11.038.
Souza, T., D. de; B. de A. e Silva; A. C. R. Guimarães e A. R. Mesquita (2020) Propriedades mecânicas de concretos asfálticos dosados com rejeitos do beneficiamento magnético a seco do minério de ferro. Transportes, v. 28, n. 1, p. 175-186. DOI:10.14295/transportes.v28i1.1964.
Underwood, B. S. e Y. R. Kim (2013) Nonlinear Viscoelastic Behavior of Asphalt Concrete and Its Implication for Fatigue
Modeling. Transportation Research Record: Journal of the Transportation Research Board, v. 2373, n. 1, p. 100–108. DOI: 10.3141/2373-11.
Vasconcelos, K. L. et al. (2006) Avaliação do Dano por Umidade Induzida e da Recuperação de Trincas em Mástique. In: XVIII Encontro De Ligante Asfáltico Instituto, 2006. Anais… Rio de Janeiro, 2017. p. 1-8.
Vasconcelos, K. L.; D. N. Little; A. Bhasin (2010) Influence of reduced production temperatures on the adhesive properties of aggregates and laboratory performance of fine aggregate-asphalt mixtures. Road Materials and Pavement Design, v. 11, n. 1, p. 47–64. DOI: 10.1080/14680629.2010.9690259.
Wang, Z. et al. (2016) Utilization of magnetite tailings as aggregates in asphalt mixtures. Construction and Building Materials, v. 114, p. 392-399. DOI: 10.1016/j.conbuildmat.2016.03.139.
Zollinger, C. J. (2005) Application of surface energy measurements to evaluate moisture susceptibility of asphalt and aggregates. 2005. 133 p. Thesis (MSc) - Texas A&M University, Austin. Disponível em: <https://oaktrust.library.tamu.edu/handle/1969.1/2320> (acesso em 17/08/2021).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Igor Castro Sá de Oliveira, Adalberto Leandro Faxina
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.