A metaheuristic approach for aircraft landing sequencing and to increase runway capacity

Authors

  • Daniel Alberto Pamplona Instituto Tecnológico de Aeronáutica, São Paulo – Brasil
  • Mayara Condé Rocha Murça Instituto Tecnológico de Aeronáutica, São Paulo – Brasil
  • Alexandre Gomes de Barros Universidade de Calgary, Alberta – Canadá
  • Claudio Jorge Pinto Alves Instituto Tecnológico de Aeronáutica, São Paulo – Brasil

DOI:

https://doi.org/10.14295/transportes.v29i4.2500

Keywords:

Aircraft landing sequencing, Air traffic flow management, Runway capacity, Optimization, Metaheuristics

Abstract

Runway capacity problems are present at several airports around the world. The efficient and effective execution of the aircraft sequencing for landing has become an alternative for increasing runway capacity at the tactical level. The aircraft sequencing problem aims to determine the best aircraft processing order for landing towards optimizing the runway usage and mitigate delays, among other objectives, subject to a series of operational restrictions. This study aims to develop a solution method for the aircraft sequencing problem that is capable of producing runway capacity gains, generating feasible solutions in low computational time and maintaining equity among the airlines by respecting the maximum number of aircraft position changes in a new sequence. The method is based on the simulated annealing metaheuristic adapted to the context of the problem studied. The Airland dataset, available in the OR-library, and actual data from the São Paulo/Guarulhos International Airport were used to evaluate the potential benefits of the method proposed. The results showed capacity gains of up to 21% for the theoretical data and of 10% for the actual data.

Downloads

Download data is not yet available.

Author Biography

Daniel Alberto Pamplona, Instituto Tecnológico de Aeronáutica, São Paulo – Brasil

Doutorando em Engenharia de Infraestrutura Aeronáutica no Instituto Tecnológico de Aeronáutica (ITA) àrea de concentração Transporte Aéreo.

References

Andreeva-Mori, A.; S. Suzuki e E. Itoh (2013) Rule derivation for arrival aircraft sequencing. Aerospace Science and Technology, n. 30, p. 200-209. DOI: 10.1016/j.ast.2013.08.004

Avella, P.; M. Boccia; C. Mannino e I. Vasilyev (2017) Time-indexed formulations for the runway scheduling problem. Trans-portation Science, n. 51, p. 1196-1209. DOI: 10.1287/trsc.2017.0750

Balakrishnan, H. e B. G. Chandran (2010) Algorithms for scheduling runway operations under constrained position shifting. Operations Research, n. 58, p. 1650-1665. DOI: 10.1287/opre.1100.0869

Barnhart, C. e B. Smith (2012) Quantitative problem-solving methods in the airline industry. Heidelberg: Springer. DOI: 10.1007/978-1-4614-1608-1

Beasley, J. E.; M. Krishnamoorthy; Y. M. Sharaiha e D. Abramson (2000) Scheduling aircraft landings—the static case. Trans-portation science, n. 34, p. 180-197. DOI: 10.1287/trsc.34.2.180.12302

Beasley, J. E.; M. Krishnamoorthy; Y. M. Sharaiha e D. Abramson (2004) Displacement problem and dynamically scheduling aircraft landings. Journal of the operational research society, n. 55, p. 54-64. DOI: 10.1057/palgrave.jors.2601650

Bennell, J. A.; M. Mesgarpour e C. N. Potts (2011) Airport runway scheduling. 4OR, n. 9, p. 115. DOI: 10.1007/s10288-011-0172-x

Bennell, J. A.; M. Mesgarpour e C. N. Potts (2013) Airport runway scheduling. Annals of Operations Research, n. 204, p. 249-270. DOI: 10.1007/s10479-012-1268-1

Bennell, J. A.; M. Mesgarpour e C. N. Potts (2016) Dynamic scheduling of aircraft landings. European Journal of Operational Research, n. 258, p. 315-327. DOI: 10.1016/j.ejor.2016.08.015

Briskorn, D. e R. Stolletz (2013) Aircraft landing problems with aircraft classes. Journal of Scheduling, n. 17, p. 31-45. DOI: 10.1007/s10951-013-0337-x

Brueckner, J. K. (2002) Internalization of airport congestion. Journal of Air Transport Management, n. 8, p. 141-147. DOI: 10.1016/s0969-6997(01)00049-7

Caccavale, M. V.; A. Iovanella; C. Lancia; G. Lulli e B. Scoppola (2014) A model of inbound air traffic: The application to Heathrow airport. Journal of Air Transport Management, n. 34, p. 116-122. DOI: 10.1016/j.jairtraman.2013.09.004

Capri, S. e M. Ignaccolo (2004) Genetic algorithms for solving the aircraft-sequencing problem: the introduction of depar-tures into the dynamic model. Journal of Air Transport Management, n. 10, p. 345-351. DOI: 10.1016/j.jairtraman.2004.05.004

Fahle, T.; R. Feldmann; S. Götz; S. Grothklags e B. Monien (2004) The aircraft sequencing problem. Computer science in per-spective. Springer. DOI: 10.1007/3-540-36477-3_11

Faye, A. (2015) Solving the aircraft landing problem with time discretization approach. European Journal of Operational Re-search, n. 242, p. 1028-1038. DOI: 10.1016/j.ejor.2014.10.064

Furini, F.; M. P. Kidd; C. A. Persiani e P. Toth (2015) Improved rolling horizon approaches to the aircraft sequencing problem. Journal of Scheduling, n. 18, p. 435-447. DOI: 10.1007/s10951-014-0415-8

Ghoniem, A. e F. Farhadi (2015) A column generation approach for aircraft sequencing problems: a computational study. Journal of the Operational Research Society, n. 66, p. 1717-1729. DOI: 10.1057/jors.2014.131

Ghoniem, A.; F. Farhadi e M. Reihaneh (2015) An accelerated branch-and-price algorithm for multiple-runway aircraft se-quencing problems. European Journal of Operational Research, n. 246, p. 34-43. DOI: 10.1016/j.ejor.2015.04.019

Ghoniem, A.; H. D. Sherali e H. Baik (2014) Enhanced models for a mixed arrival-departure aircraft sequencing problem. INFORMS Journal on Computing, n. 26, p. 514-530. DOI: 10.1287/ijoc.2013.0581

Gillen, D.; A. Jacquillat e A. R. Odoni (2016) Airport demand management: The operations research and economics perspec-tives and potential synergies. Transportation Research Part A: Policy and Practice, n. 94, p. 495-513. DOI: 10.1016/j.tra.2016.10.011

Harikiopoulo, D. e N. Neogi (2011) Polynomial-time feasibility condition for multiclass aircraft sequencing on a single-runway airport. IEEE transactions on intelligent transportation systems, n. 12, p. 2-14. DOI: 10.2514/6.2004-6547

Hirst, M. (2008) The air transport system. Amsterdam: Elsevier. DOI: 10.1533/9781845695224

Hoffman, K.L; M. Padberg e G. Rinaldi (2013) Traveling salesman problem. Encyclopedia of operations research and manage-ment science, n. 1, p. 1573-1578. DOI: 10.1007/978-1-4419-1153-7_1068

Hu, X. B. e W. H. Chen (2005) Genetic algorithm based on receding horizon control for arrival sequencing and scheduling. Engineering Applications of Artificial Intelligence, n. 18, p. 633-642. DOI: 10.1016/j.engappai.2004.11.012

Hu, X. B. e E. A. D. Paolo (2011) A ripple-spreading genetic algorithm for the aircraft sequencing problem. Evolutionary Com-putation, n. 19, p. 77-106. DOI: 10.1162/evco_a_00011

ICAO (2014) Doc 9971 Manual on Collaborative Air Traffic Flow Management. International Civil Aviation Organization

Jacquillat, A. e A. R. Odoni (2015) Endogenous control of service rates in stochastic and dynamic queuing models of airport congestion. Transportation Research Part E: Logistics and Transportation Review, n. 73, p. 133-151. DOI: 10.1016/j.tre.2014.10.014

Ji, X. P.; X. B. Cao; W. B. Du e K. Tang (2016) An evolutionary approach for dynamic single-runway arrival sequencing and scheduling problem. Soft Computing, n. 21, p. 7021-7037. DOI: 10.1007/s00500-016-2241-8

Lieder, A. e R. Stolletz (2016) Scheduling aircraft take-offs and landings on interdependent and heterogeneous runways. Transportation research part E: logistics and transportation review, n. 88, p. 167-188. DOI: 10.2139/ssrn.2657577

Liu, Y. H. (2010) A genetic local search algorithm with a threshold accepting mechanism for solving the runway dependent aircraft landing problem. Optimization Letters, n. 5, p. 229-245. DOI: 10.1007/s11590-010-0203-0

Luenberger, R. A. (1988) A traveling-salesman-based approach to aircraft scheduling in the terminal area. Houston: National Aeronautics and Space Administration.

Ma, W.; B. Xu; M. Liu e H. Huang (2014) An efficient approximation algorithm for aircraft arrival sequencing and scheduling problem. Mathematical Problems in Engineering. DOI: 10.1155/2014/236756

Madas, M. A. e K. G. Zografos (2008) Airport capacity vs. demand: mismatch or mismanagement? Transportation Research Part A: Policy and Practice, n. 42, p. 203-226. DOI: 10.1016/j.tra.2007.08.002

Nolan, M. (2011) Fundamentals of air traffic control. Boston: Cengage learning.

Pamplona, D. A.; T. Hermeto; C. J. P. Alves; C. Muller (2015) Impactos na capacidade aérea através da recategorização da esteira de turbulência das aeronaves. Revista de Engenharia e Tecnologia, n. 7, p. 162-175.

Rodríguez-Díaz, A.; B. Adenso-Díaz e P. L. González-Torre (2017) Minimizing deviation from scheduled times in a single mi-xed-operation runway. Computers & Operations Research, n. 78, p. 193-202. DOI: 10.1016/j.cor.2016.09.014

Sama, M.; A. D’ariano; P. D’ariano e D. Pacciarelli (2016) Scheduling models for optimal aircraft traffic control at busy air-ports: tardiness, priorities, equity and violations considerations. Omega, n. 67, p. 81-98. DOI: 10.1016/j.omega.2016.04.003

Skorupski, J. e A. Florowski (2016) Method for evaluating the landing aircraft sequence under disturbed conditions with the use of Petri nets. The Aeronautical Journal, n. 120, p. 819-844. DOI: 10.1017/aer.2016.32

Sölveling, G.; S. Solak; J. P. B. Clarke e E. L. Johnson (2011) Scheduling of runway operations for reduced environmental im-pact. Transportation Research Part D: Transport and Environment, n. 16, p. 110-120. DOI: 10.1287/opre.1100.0869

Sylejmani, K.; E. Bytyçi e A. Dika (2017) Solving aircraft sequencing problem by using genetic algorithms. Intelligent Decision Technologies, p. 1-13. DOI: 10.3233/idt-170309

Tian, Y.; L. Wan; K. Han e B. Ye (2018) Optimization of terminal airspace operation with environmental considerations. Transportation Research Part D: Transport and Environment, n. 63, p. 872-889. DOI: 10.1016/j.trd.2018.06.018

TRB (2012) Evaluating Airfield Capacity - ACRP Report 79. Washington, D.C.: Transportation Research Board

Trivizas, D. A. (1998) Optimal scheduling with maximum position shift (MPS) constraints: A runway scheduling application. The Journal of Navigation, n. 51, p. 250-266. DOI: 10.1017/s0373463397007625

Tu, Y.; M. O. Ball e W. S. Jank (2008) Estimating flight departure delay distributions—a statistical approach with long-term trend and short-term pattern. Journal of the American Statistical Association, n. 103, p. 112-125. DOI: 10.2139/ssrn.923628

Vasilyev, I. L.; P. Avella e M.Boccia (2016) A branch and cut heuristic for a runway scheduling problem. Automation and Re-mote Control, n. 77, p. 1985-1993. DOI: 10.1134/s0005117916110084

Xu, B. (2017) An efficient Ant Colony algorithm based on wake-vortex modeling method for aircraft scheduling problem. Journal of Computational and Applied Mathematics, n. 317, p. 157-170. DOI: 10.1016/j.cam.2016.11.043

Zhan, Z. H.; J. Zhang; Y. Li; O. Liu; S. Kwok; W. Ip e O. Kaynak (2010) An efficient ant colony system based on receding horizon control for the aircraft arrival sequencing and scheduling problem. IEEE Transactions on Intelligent Transportation Sys-tems, n. 11, p. 399-412. DOI: 10.1145/1569901.1570148

Zhang, X.; X. Zhang; J Zhang e B. Liu (2007) Optimization of sequencing for aircraft arrival based on approach routes. Belle-vue: IEEE Intelligent Transportation Systems Conference, p. 592-596. DOI: 10.1109/itsc.2007.4357670

Zhou, H. e X. Jiang (2015) Multirunway optimization schedule of airport based on improved genetic algorithm by dynamical time window. Mathematical Problems in Engineering. DOI: 10.1155/2015/854372

Published

2021-10-28

How to Cite

Pamplona, D. A., Condé Rocha Murça, M. ., Gomes de Barros, A. ., & Pinto Alves, C. J. . (2021). A metaheuristic approach for aircraft landing sequencing and to increase runway capacity. TRANSPORTES, 29(3), 2500. https://doi.org/10.14295/transportes.v29i4.2500

Issue

Section

Artigos