Railway maintenance resources route planning considering synchronism, precedence and priority

Authors

  • Guilherme de Almeida Eleutério Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brasil
  • Rodrigo Alvarenga Rosa Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brasil https://orcid.org/0000-0003-0841-514X

DOI:

https://doi.org/10.58922/transportes.v31i2.2644

Keywords:

Railway Resource, Track Structure, Vehicle Routing Problem with Synchronization Constraints

Abstract

Due to the increase in the use of the railroads, there was an increase in the demand for maintenance of the track superstructure, to repair the damage caused by transport. To perform track maintenance, several railway resources are used, which must be moved from one section of the railway to another. Planning the route that each resource needs to travel to fulfill maintenance orders (OMs) must consider synchronization, precedence, and priority of OMs. Thus, this article proposes an innovative mathematical model, integrates eight different mathematical models of vehicle routing, to plan the routes of resources to fulfill OMs, aiming to maximize the number of OMs served in the planning period. Data from the Vitória Minas Railway were used to test the model. The results showed that increasing the maximum period to start OM can increase the maintenance team capacity to fulfill OMs.

Downloads

Download data is not yet available.

References

Ait Haddadene, S.R.; N. Labadie e C. Prodhon (2016) A GRASP × ILS for the vehicle routing problem with time windows, synchronization and precedence constraints. Expert Systems with Applications, v. 66, p. 1339-51. DOI: 10.1016/j.eswa.2016.09.002. DOI: https://doi.org/10.1016/j.eswa.2016.09.002

ANTF (2019) Associação Nacional do Transportes Ferroviários: Informações Gerais. Disponível em: <http://www.antf.org.br/informacoes-gerais/> (acesso em 08/05/2023).

ANTT (2019a) Caderno de Engenharia. Brasília, DF: Agência Nacional de Transportes Terrestres.

ANTT (2019b). Manual de Custos Referências Ferroviários: Metodologia e Conceitos. Brasília, DF: Agência Nacional de Transportes Terrestres.

Bredström, D. e M. Rönnqvist (2008) Combined vehicle routing and scheduling with temporal precedence and synchronization constraints. European Journal of Operational Research, v. 191, n. 1, p. 19-31. DOI: 10.1016/j.ejor.2007.07.033. DOI: https://doi.org/10.1016/j.ejor.2007.07.033

Carvalhaes, B.B.; R. de Alvarenga Rosa; M.A. D'Agosto et al. (2017). A method to measure the eco-efficiency of diesel locomotive. Transportation Research Part D: Transport and Environment, v. 51, pp. 29-42. DOI: 10.1016/j.trd.2016.11.031. DOI: https://doi.org/10.1016/j.trd.2016.11.031

Cattaruzza, D.; N. Absi e D. Feillet (2018) Vehicle routing problems with multiple trips. Annals of Operations Research, v. 271, n. 1, p. 127-59. DOI: 10.1007/s10479-018-2988-7. DOI: https://doi.org/10.1007/s10479-018-2988-7

Drexl, M. (2012) Synchronization in vehicle routing: a survey of VRPs with multiple synchronization constraints. Transportation Science, v. 46, n. 3, p. 297-316. DOI: 10.1287/trsc.1110.0400. DOI: https://doi.org/10.1287/trsc.1110.0400

Higgins, A.; L. Ferreira e M. Lake (1999). Scheduling rail track maintenance to minimise overall delays. In International Symposium on Transportation and Traffic Theory. Oxford: Elsevier Science, p. 779-796. Disponível em: <http://eprints.qut.edu.au/2417> (acesso em 08/05/2023).

IBM (2020) IBM ILOG CPLEX Optimization Studio 12.10: using logical constraints. Disponível em: <https://www.ibm.com/support/pages/downloading-ibm-ilog-cplex-optimization-studio-v12100 > (acesso em 08/05/2023).

Labadie, N.; C. Prins e Y. Yang (2014). Iterated local search for a vehicle routing problem with synchronization constraints. In Proceedings of the 3rd International Conference on Operations Research and Enterprise Systems. Angers, France: Science and Technology Publications, p. 257-263. DOI: 10.5220/0004837502570263 DOI: https://doi.org/10.5220/0004837502570263

Lidén, T. e M. Joborn (2017) An optimization model for integrated planning of railway traffic and network maintenance. Transportation Research Part C, Emerging Technologies, v. 74, p. 327-47. DOI: 10.1016/j.trc.2016.11.016. DOI: https://doi.org/10.1016/j.trc.2016.11.016

Liu, R.; Y. Tao e X. Xie (2019) An adaptive large neighborhood search heuristic for the vehicle routing problem with time windows and synchronized visits. Computers & Operations Research, v. 101, p. 250-62. DOI: 10.1016/j.cor.2018.08.002. DOI: https://doi.org/10.1016/j.cor.2018.08.002

López-Aguilar, E.; V. Boyer; M.A. Salazar-Aguilar et al. (2018) Linear formulations for the vehicle routing problem with synchronization constraints. Journal of Computer and Systems Sciences International, v. 57, n. 3, p. 453-62. DOI: 10.1134/S106423071803005X. DOI: https://doi.org/10.1134/S106423071803005X

Montoya-Torres, J.; J. López Franco; S. Nieto Isaza et al. (2015) A literature review on the vehicle routing problem with multiple depots. Computers & Industrial Engineering, v. 79, p. 115-29. DOI: 10.1016/j.cie.2014.10.029. DOI: https://doi.org/10.1016/j.cie.2014.10.029

PETROBRAS. Fórmulas de Conversão (2020). Disponível em: <http://www.investidorpetrobras.com.br/pt/destaquesoperacionais/formulas-de-conversao>. (acesso em: 30/01/2020).

Quiroga, L.M. e E. Schnieder (2010) A heuristic approach to railway track maintenance scheduling. WIT Transactions on the Built Environment, v. 114, p. 687-99. DOI: 10.2495/CR100631. DOI: https://doi.org/10.2495/CR100631

Rasmussen, M.S.; T. Justesen; A. Dohn et al. (2012) The home care crew scheduling problem: preference-based visit clustering and temporal dependencies, European Journal of Operational Research. v. 219, n. 3, p. 598-610. DOI: 10.1016/j.ejor.2011.10.048. DOI: https://doi.org/10.1016/j.ejor.2011.10.048

Sedighizadeh, D. e H. Mazaheripour (2018) Optimization of multi objective vehicle routing problem using a new hybrid algorithm based on particle swarm optimization and artificial bee colony algorithm considering precedence constraints. Alexandria Engineering Journal, v. 57, n. 4, p. 2225-39. DOI: 10.1016/j.aej.2017.09.006. DOI: https://doi.org/10.1016/j.aej.2017.09.006

Su, Z. e B. Schutter (2018) Optimal scheduling of track maintenance activities for railway networks. IFAC-PapersOnLine, v. 51, n. 9, p. 386-91. DOI: 10.1016/j.ifacol.2018.07.063. DOI: https://doi.org/10.1016/j.ifacol.2018.07.063

Toth, P. e D. Vigo (2014). Vehicle routing problems, methods and applications. In Toth, P. e Vigo, D. (eds.) Monographs on Discrete Mathematics and Applications. Philadelphia: SIAM. DOI: https://doi.org/10.1137/1.9781611973594

Trachanatzi, D.; E. Tsakirakis; M. Marinaki et al. (2019) A memetic algorithm for the team orienteering problem. In Moscato, P. e Vries, N. (eds.) Business and Consumer Analytics: New Ideas. Cham: Springer, p. 609-635. DOI: 10.1007/978-3-030-06222-4_14 DOI: https://doi.org/10.1007/978-3-030-06222-4_14

Vale (2009) Manual técnico da via permanente.Disponível em: <https://www.academia.edu/35196754/MANUAL_T%C3%89CNICO_DA_VIA_PERMANENTE/> (acesso em 08/05/2023).

Zare-Reisabadi, E. e S. Hamid Mirmohammadi(2015) Site dependent vehicle routing problem with soft time window: Modeling and solution approach. Computers & Industrial Engineering, v. 90, p. 177-85. DOI: 10.1016/j.cie.2015.09.002. DOI: https://doi.org/10.1016/j.cie.2015.09.002

Published

2023-08-30

How to Cite

de Almeida Eleutério, G., & Rosa, R. A. (2023). Railway maintenance resources route planning considering synchronism, precedence and priority. TRANSPORTES, 31(2), e2644. https://doi.org/10.58922/transportes.v31i2.2644

Issue

Section

Artigos