The effect of different aggregations of severity levels of crashes with pedestrians in urban areas
DOI:
https://doi.org/10.14295/transportes.v30i3.2664Keywords:
Injury severity, Pedestrian crash, Multinomial logit modelAbstract
Promoting a safer road environment for pedestrians requires an understanding of the risk factors associated with the injuries suffered by these users while involved in crashes. Injury levels as recorded by police reports may be subjected to bias and errors specially in adjacent and not extreme injury categories. The aim of this study is to investigate the impact of different severity classification configurations on identifying factors related to crashes involving pedestrians in urban areas. Multinomial logit models were estimated using crash records from the city of Fortaleza between the years 2017 and 2019. The results indicated that the combination of some severity levels can lead to different significant variables and, thus, depending on the specification of the response variable, the influence of important risk factors may end up being ignored in the model. Among the analyzed factors, the age of pedestrians, the day of the week, the time of the crash and the type of road remained significant for the different configurations of severity levels. In addition, the model with three severity categories (mild/moderate, severe, and fatal) presented the best performance in terms of model adjustment. It was observed from this model that factors such as the advanced age of pedestrians, crashes occurring at night, with heavy vehicles, on weekends and located on arterial or expressways are associated with more severe injuries.
Downloads
References
Abay, K. A. (2013) Examining pedestrian-injury severity using alternative disaggregate models. Research in Transportation Economics, , v. 43, n. 1, p. 123–136. DOI:10.1016/j.retrec.2012.12.002 DOI: https://doi.org/10.1016/j.retrec.2012.12.002
Abrari Vajari, M.; Aghabayk, K.; Sadeghian, M.; Shiwakoti, N. (2020) A multinomial logit model of motorcycle crash severity at Australian intersections. Journal of Safety Research, v. 73, p. 17–24. DOI: 10.1016/j.jsr.2020.02.008 DOI: https://doi.org/10.1016/j.jsr.2020.02.008
Agresti, A. (2006) An Introduction to Categorical Data Analysis. 2.ed., New Jersey: Wiley. DOI: https://doi.org/10.1002/0470114754
Aziz, H; M. A.; Ukkusuri, S. V.; Hasan, S. (2013) Exploring the determinants of pedestrian-vehicle crash severity in New York City. Accident Analysis and Prevention, v. 50, p. 1298–1309, 2013. DOI: 10.1016/j.ijtst.2018.10.001 DOI: https://doi.org/10.1016/j.aap.2012.09.034
Batouli, G.; Guo, M.; Janson, B.; Marshall, W. (2020) Analysis of pedestrian-vehicle crash injury severity factors in Colorado 2006–2016. Accident Analysis and Prevention, v. 148. DOI: 10.1016/j.aap.2020.105782 DOI: https://doi.org/10.1016/j.aap.2020.105782
Bhat, C. R.; Astroza, S. e Lavieri, P. S.(2017) A new spatial and flexible multivariate random-coefficients model for the analysis of pedestrian injury counts by severity level. Analytic Methods in Accident Research, v.16, p. 1- 22. DOI: 10.1016/j.amar.2017.05.001 DOI: https://doi.org/10.1016/j.amar.2017.05.001
Bhatti, J. A.; Razzak, J. A.; Lagarde, E.; Salmi, L. R. (2011) Differences in police, ambulance, and emergency department reporting of traffic injuries on Karachi-Hala road, Pakistan. BMC Research Notes, v. 4. DOI: 10.1186/1756-0500-4-75 DOI: https://doi.org/10.1186/1756-0500-4-75
Belin, M. A.; Tillgren, P.; Vedung, E.. (2012) Vision Zero–a road safety policy innovation. International journal of injury control and safety promotion, v. 19, n. 2, p. 171-179. DOI: 10.1080/17457300.2011.635213 DOI: https://doi.org/10.1080/17457300.2011.635213
Broughton, J.; Keigan, M.; Yannis, G.; Evgenikos, P.;Chaziris, A.; Papadimitriou, E.; Bos, N. M.; Hoeglinger, S.; Pérez, K.; Amoros, E.; Holló, P.; Tecl, J. (2010) Estimation of the real number of road casualties in Europe. Safety Science, v. 48, n. 3, p. 365–371. DOI: 10.1016/j.ssci.2009.09.012 DOI: https://doi.org/10.1016/j.ssci.2009.09.012
Burdett, B.; Li, Z.; Bill, A. R. Noyce, D. A. (2015) Accuracy of Injury Severity Ratings on Police Crash Reports. Transportation Research Record, v. 2516, p. 58–67. DOI: 10.3141/2516-09 DOI: https://doi.org/10.3141/2516-09
Casado-Sanz, N.; Guirao, B.; Attard, Maria. (2020) Analysis of the risk factors affecting the severity of traffic accidents on spanish crosstown roads: The driver’s perspective. Sustainability (Switzerland), v. 12, n. 6. DOI: 10.3390/su12062237 DOI: https://doi.org/10.3390/su12062237
Chen, Z. e Fan, W. (2019). A multinomial logit model of pedestrian-vehicle crash severity in North Carolina. International Journal of Transportation Science and Technology, v. 8, n. 1, p. 43–52. DOI: 10.1016/j.ijtst.2018.10.001 DOI: https://doi.org/10.1016/j.ijtst.2018.10.001
Chen, S.; Zhang, S.; Xing, Y.; Lu, J. (2020) Identifying the factors contributing to the severity of truck-involved crashes in Shanghai rivercrossing tunnel. International Journal of Environmental Research and Public Health, v. 17, n. 9. DOI: 10.3390/ijerph17093155 DOI: https://doi.org/10.3390/ijerph17093155
Clifton, K. J.; Burnier, C. V. e Akar, G..(2009) Severity of injury resulting from pedestrian-vehicle crashes: What can we learn from examining the built environment? Transportation Research Part D: Transport and Environment, v. 14, n. 6, p. 425–436. DOI: 10.1016/j.trd.2009.01.001 DOI: https://doi.org/10.1016/j.trd.2009.01.001
Couto, A.; Amorim, M.; Ferreira, S. (2016) Reporting road victims: Assessing and correcting data issues through distinct injury scales. Journal of Safety Research, v. 57, p. 39–45. DOI: 10.1016/j.jsr.2016.03.008 DOI: https://doi.org/10.1016/j.jsr.2016.03.008
Dong, C.; Khattak, A. J.; Shao, C.; Xie, K. (2019) Exploring the factors contribute to the injury severities of vulnerable roadway user involved crashes. International Journal of Injury Control and Safety Promotion, v. 26, n. 3, p. 302–314. DOI: 10.1080/17457300.2019.1595665 DOI: https://doi.org/10.1080/17457300.2019.1595665
Donmez, B. e Liu, Z.. (2015) Associations of distraction involvement and age with driver injury severities. Journal of Safety Research, v. 52, p. 23–28. DOI: 10.1016/j.jsr.2014.12.001 DOI: https://doi.org/10.1016/j.jsr.2014.12.001
Dutta, B. e Vasudevan, V. (2017) Study on pedestrian risk exposure at unsignalized intersection in a country with extreme vehicle heterogeneity and poor lane discipline. Transportation Research Record, v. 2634, p. 69–77. DOI: 10.3141/2634-11 DOI: https://doi.org/10.3141/2634-11
Eluru, N.;Bhat, C. R. e Hensher, D. A.(2008) A mixed generalized ordered response model for examining pedestrian and bicyclist injury severity level in traffic crashes. Accident Analysis and Prevention, v. 40, n. 3, p. 1033–1054. DOI: 10.1016/j.aap.2007.11.010 DOI: https://doi.org/10.1016/j.aap.2007.11.010
Elvik, R., 2004. To what extent can theory account for the findings of road safety evaluation studies? Accident Analysis and Prevention, v. 36, p. 841–849. DOI: 10.1016/j.aap.2003.08.003 DOI: https://doi.org/10.1016/j.aap.2003.08.003
Fagerland, M. W.; Hosmer, D. W. e Bofin, A. M. (2008) Multinomial goodness-of-fit tests for logistic regression models. Statistics in Medicine, v. 27, n. 21, p. 4238-4253. DOI: 10.1002/sim.3202 DOI: https://doi.org/10.1002/sim.3202
Ferreira, S.; Falcão, L.; Couto, A.; Amorim, M. (2015) The quality of the injury severity classification by the police: An important step for a reliable assessment. Safety Science, v. 79, p. 88–93. DOI: 10.1016/j.ssci.2015.05.013 DOI: https://doi.org/10.1016/j.ssci.2015.05.013
Ferreira, S.; Amorim, M.; Couto, A. (2017). Risk factors affecting injury severity determined by the MAIS score. Traffic Injury Prevention, v. 18, p. 1–29. DOI: 10.1080/15389588.2016.1246724 DOI: https://doi.org/10.1080/15389588.2016.1246724
Garder, P. E. (2004) The impact of speed and other variables on pedestrian safety in Maine. Accident Analysis and Prevention, v. 36, n. 4, p. 533–542. DOI: 10.1016/S0001-4575(03)00059-9 DOI: https://doi.org/10.1016/S0001-4575(03)00059-9
Hausman, Jerry; McFadden, Daniel. (1984) Specification tests for the multinomial logit model. Econometrica: Journal of the Econometric Society, p. 1219-1240. DOI: 10.2307/1910997 DOI: https://doi.org/10.2307/1910997
Highway safety manual. (2010) American Association of State Highway and Transportation Officials: Washington, DC, USA.
Hussain, Q.; Feng, H.; Grzebieta, R.; Brijs, T.; Olivier, J. (2019) The relationship between impact speed and the probability of pedestrian fatality during a vehicle-pedestrian crash: A systematic review and meta-analysis. Accident Analysis and Prevention, v. 129, n. January, p. 241–249. DOI: 10.1016/j.aap.2019.05.033 DOI: https://doi.org/10.1016/j.aap.2019.05.033
Imprialou, M; Quddus, M. (2019) Crash data quality for road safety research: Current state and future directions. Accident Analysis and Prevention, v. 130, n. 6, p. 84-90. DOI:10.1016/j.aap.2017.02.022 DOI: https://doi.org/10.1016/j.aap.2017.02.022
Jang, Kitae; Park, Shin; Kang, Sanghyeok; Song, Ki Kang, Seungmo e Chung, Sungbong. (2013) Evaluation of pedestrian safety. Transportation Research Record, n. 2393, p. 104–116. DOI: 10.3141/2393-12 DOI: https://doi.org/10.3141/2393-12
Kim, J. K.; Ulfarssom, G. F.; Shankar, V. N. e Mannering, F. L. (2010) A note on modeling pedestrian-injury severity in motor-vehicle crashes with the mixed logit model. Accident Analysis and Prevention, v. 42, n. 6, p. 1751–1758. DOI: 10.1016/j.aap.2010.04.016 DOI: https://doi.org/10.1016/j.aap.2010.04.016
Kwigizile, V.; Sando, T. e Chimba, D.. (2011) Inconsistencies of ordered and unordered probability models for pedestrian injury severity. Transportation Research Record, n. 2264, p. 110–118. DOI:10.3141/2264-13 DOI: https://doi.org/10.3141/2264-13
Lee, C. e Abdel-Aty, M.. (2005) Comprehensive analysis of vehicle-pedestrian crashes at intersections in Florida. Accident Analysis and Prevention, v. 37, n. 4, p. 775–786. DOI:10.1016/j.aap.2005.03.019 DOI: https://doi.org/10.1016/j.aap.2005.03.019
Li, D; Ranjitkar, P.; Zhao, Y.; Yi, H. e Rashidi, S. (2016). Analyzing pedestrian crash injury severity under different weather conditions. Traffic Injury Prevention,v.18, n.4, p. 427–430. DOI: 10.1080/15389588.2016.1207762 DOI: https://doi.org/10.1080/15389588.2016.1207762
Li, Y.; Fan, W. D. (2019) Modelling severity of pedestrian-injury in pedestrian-vehicle crashes with latent class clustering and partial proportional odds model: A case study of North Carolina. Accident Analysis and Prevention, v. 131, p. 284–296. DOI: 10.1016/j.aap.2019.07.008 DOI: https://doi.org/10.1016/j.aap.2019.07.008
Manner, H. e Wünsch-Ziegler, L. (2013) Analyzing the severity of accidents on the German Autobahn. Accident Analysis and Prevention, v. 57, p. 40–48. DOI:10.1016/j.aap.2013.03.022 DOI: https://doi.org/10.1016/j.aap.2013.03.022
Mannering, F. L.; Bhat, C. R. (2014) Analytic methods in accident research: Methodological frontier and future directions. Analytic methods in accident research, v. 1, p. 1-22. DOI:10.1016/j.amar.2013.09.001 DOI: https://doi.org/10.1016/j.amar.2013.09.001
Mannering, F. L.; Shankar, V.; Bhat, C. R. (2016) Unobserved heterogeneity and the statistical analysis of highway accident data. Analytic Methods in Accident Research, v. 11, p. 1–16. DOI:10.1016/j.amar.2016.04.001 DOI: https://doi.org/10.1016/j.amar.2016.04.001
McDonald, G. e Davie, G. e Langley, J. (2009) Validity of police-reported information on injury severity for those hospitalized from motor vehicle traffic crashes. Traffic Injury Prevention, v. 10, n. 2, p. 184–190. DOI: 10.1080/15389580802593699 DOI: https://doi.org/10.1080/15389580802593699
Ortúzar, J. D e Willumsen, L. G. Modelling Transport. 4ed. Wiley, 2011. DOI: https://doi.org/10.1002/9781119993308
Peduzzi, P. N.; Concato, J.; Kemper, E.; Holford, T. R. e Feinstein, A. (1996). A simulation study of the number of events per variable in logistic regression analysis. Journal of Clinical Epidemiology, v.99, p. 1373–1379. DOI: 10.1016/s0895-4356(96)00236-3 DOI: https://doi.org/10.1016/S0895-4356(96)00236-3
Pour-Rouholamin, M, e Zhou, H.. (2016) Investigating the risk factors associated with pedestrian injury severity in Illinois. Journal of Safety Research, v. 57, p. 9–17. DOI:10.1016/j.jsr.2016.03.004 DOI: https://doi.org/10.1016/j.jsr.2016.03.004
Rosén, E.; Stigson, H. e Sander, U.. (2011) Literature review of pedestrian fatality risk as a function of car impact speed. Accident Analysis and Prevention, v. 43, n. 1, p. 25–33. DOI:10.1016/j.aap.2010.04.003 DOI: https://doi.org/10.1016/j.aap.2010.04.003
Rosenbloom, T. (2009) Crossing at a red light: Behaviour of individuals and groups. Transportation Research Part F: Traffic Psychology and Behaviour, v. 12, n. 5, p. 389–394. DOI:10.1016/j.trf.2009.05.002 DOI: https://doi.org/10.1016/j.trf.2009.05.002
Rothman, L.; Howard, A. W.; Camden, A.; Macarthur, C. (2012) Pedestrian crossing location influences injury severity in urban áreas. Injury Prevention, v. 18, n.6, p. 365-370. DOI:10.1136/injuryprev-2011-040246 DOI: https://doi.org/10.1136/injuryprev-2011-040246
Salum, J. H.; Kitali, A. E.; Bwire, H.; Sando, T.; Alluri, P. (2019). Severity of motorcycle crashes in Dar es Salaam, Tanzania. Traffic Injury Prevention, p. 189–195. DOI: 10.1080/15389588.2018.1544706 DOI: https://doi.org/10.1080/15389588.2018.1544706
Savolainen, P. T.; Mannering, F. L.; Lord, D. e Quddus, M. A. (2011) The statistical analysis of highway crash-injury severities: A review and assessment of methodological alternatives. Accident Analysis and Prevention, v. 43, n. 5, p. 1666–1676. DOI:10.1016/j.aap.2011.03.025 DOI: https://doi.org/10.1016/j.aap.2011.03.025
Shinar, D. (2017). Traffic safety and human behavior (2ª ed). Emerald Group Publishing. DOI: https://doi.org/10.1108/9781786352217
Sze, N. N. e Wong, S. C. (2007) Diagnostic analysis of the logistic model for pedestrian injury s
everity in traffic crashes. Accident Analysis and Prevention, v. 39, n. 6, p. 1267–1278. DOI:10.1016/j.aap.2007.03.017 DOI: https://doi.org/10.1016/j.aap.2007.03.017
Sun, M.; Sun, X. e Shan, D. (2019) Pedestrian crash analysis with latent class clustering method. Accident Analysis and Prevention, v. 124, n. June 2018, p. 50–57. DOI:10.1016/j.aap.2018.12.016 DOI: https://doi.org/10.1016/j.aap.2018.12.016
Tay, R.; Choi, J.; Kattan, L. e Khan, A. (2011). A multinomial logit model of pedestrian–vehicle crash severity. International journal of sustainable transportation, v. 5, n. 4, p. 233-249. DOI:10.1016/j.ijtst.2018.10.001 DOI: https://doi.org/10.1080/15568318.2010.497547
Torres, C.; Sobreira, L.; Castro-Neto, M.; Cunto, F.; Vecino-Ortiz, A.; Allen, K.; Hyder, A e Bachani, A. (2020) Evaluation of Pedestrian Behavior on Mid-block Crosswalks: A Case Study in Fortaleza—Brazil. Frontiers in Sustainable Cities, v.2, p. 1 – 6. DOI:10.3389/frsc.2020.00003 DOI: https://doi.org/10.3389/frsc.2020.00003
Tsui, K. L.; So, F. L.; Sze, N. N.; Wong, S. C.; Leung, T. F. (2009) Misclassification of injury severity among road casualties in police reports. Accident Analysis and Prevention, v. 41, p. 84 – 89. DOI:10.1016/j.aap.2008.09.005 DOI: https://doi.org/10.1016/j.aap.2008.09.005
Uddin, M. e Ahmed, F. (2018) Pedestrian injury severity analysis in motor vehicle crashes in Ohio. Safety, v. 4, n. 2, p. 0–10. DOI:10.3390/safety4020020 DOI: https://doi.org/10.3390/safety4020020
Wang, Y. Y.; Haque, M. M.; Chin, H. C. eYun, J. G. J. (2013) Injury severity of pedestrian crashes in Singapore. Australasian Transport Research Forum, ATRF 2013 – Proceedings.
Washington, P. S.; Karlaftis G. M. e Mannering F. L. (2003) Statistical and Econometric Methods for Transportation Data Analysis. Chapman & Hall/CRC, Nova Iorque, 2003. DOI: https://doi.org/10.1201/9780203497111
Welle, B. et al (2018). Sustainable and safe - Vision and Guidelines for Zero Traffic Deaths. World Resources Institute, Washington.
Working group on serious road traffic casualties. (2010) Reporting on Serious Road Traffic Casualties. p. 107.
World Health Organization. (2008). Speed management: a road safety manual for decision-makers and practitioners.
Zafri, N. M.; Prithul, A. A.; Baral, I.; Rahman, M. (2020) Exploring the factors influencing pedestrian-vehicle crash severity in Dhaka, Bangladesh. International Journal of Injury Control and Safety Promotion, v. 27, n. 3, p. 300–307. DOI:10.1080/17457300.2020.1774618 DOI: https://doi.org/10.1080/17457300.2020.1774618
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Mateus Nogueira Silva, Flávio José Craveiro Cunto, Marcos José Timbó Lima Gomes
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- Authors retain copyright and grant TRANSPORTES the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter into separate, additional contractual arrangements for the non-exclusive distribution of this journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in TRANSPORTES.
- Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their website) after publication of the article. Authors are encouraged to use links to TRANSPORTES (e.g., DOIs or direct links) when posting the article online, as TRANSPORTES is freely available to all readers.
- Authors have secured all necessary clearances and written permissions to published the work and grant copyright under the terms of this agreement. Furthermore, the authors assume full responsibility for any copyright infringements related to the article, exonerating ANPET and TRANSPORTES of any responsibility regarding copyright infringement.
- Authors assume full responsibility for the contents of the article submitted for review, including all necessary clearances for divulgation of data and results, exonerating ANPET and TRANSPORTES of any responsibility regarding to this aspect.